(x-1)(y+1)=3
xy+(x-y)=4
xy(x-y)=4
故xy,(x-y)为方程a^2-4a+4=0两根
xy=2 x-y=2
x^2+y^2=(x-y)^2+2xy=8
x^3-y^3=(x-y)[(x-y)^2+3xy]=20
x^4+y^4=(x^2+y^2)^-2x^2y^2=56
x^7-y^7=(x^3-y^3)(x^4+y^4)+x^3y^3(x-y)
=56*20+8*2=1136
以上
展开(x-1)(y+1)=3得到
xy+(x-y)=4
又由于xy(x-y)=4,所以令xy=s,x-y=t,得到
s+t=4
st=4
联列解得
s=2,t=2,所以
xy=2
x-y=2
剩余部分见图片