函数在某点的左右极限都存在,则该点为第一类间断点,特别的,若左右极限相等则为可去间断点,若左右极限不等则为跳跃间断点。在这里,函数在0处的右极限不存在,应该归为第二类间断点,而且还是无穷间断点。
设a是f(x)的间断点,若在x=a的右极限f(a+0)与左极限f(a-0)都存在,则称x=a是f(x)第一间断点;
若f(a+0)与f(a-0)至少有一个不存在,则称x=a是f(x)第二间断点。
第一类间断点分类
间断点分为可去间断点、跳跃间断点、无穷间断点、震荡间断点,其中可取间断点和跳跃间断点属于第一类间断点。
在第一类间断点中,左右极限相等,但不等于该点函数值f(x0)或者该点无定义时,称为可去间断点,如函数y=(x^2-1)/(x-1)在点x=1处;左右极限在该点不相等时,称为跳跃间断点,如函数y=|x|/x在x=0处。
另外, 非第一类间断点即为第二类间断点(discontinuity point of the second kind)。
第二类间断点是指函数的左右极限至少有一个不存在。第二类间断点有非常多种,如无穷间断点,振荡间断点,单侧间断点,狄利克雷函数间断点等等,但目前大学数学及考研只要求掌握无穷间断点与振荡间断点。
第一类:1.可去间断点,在那点的在极限存但没定义或不等于函数值;2.跳跃间断点,在那点左右极限都存在但不等。第二类:3.无穷间断点,在那点至少有一个极限不存在而且趋向于无穷大;4.振荡间断点,在那点无定义,极限由于摆动无趋向于任一个确定的量的这种性质而无存在极限。
数形结合,即见本原:
如图三个函数图像(橙色、绿色,紫色实线),虚线即x不能取得值。
第一类间断点:函数在该点左右都有准确值。分为跳跃间断点(橙色)、可去间断点(绿色)、
第二类间断点:函数在该点左右至少有一边是趋于无限的。
第一类间断点:可去间断点和跳跃间断点
第二类间断点:除去第一类的就是第二类,有很多种,如无穷间断点,振荡间断点,单侧间断点,狄利克雷函数间断点等等,但目前大学数学及考研只要求掌握无穷间断点与振荡间断点。