负数是数学术语,负数与正数表示意义相反的量。一个负数总是某个正数的相反数。负数用负号(MinusSign,即相当于减号)-和一个正数标记,如-2、代表的就是2的相反数。
中国对负数的认识
史料记载, 我国在战国时期就认识到了负数。如李悝(约前455-395)在《法经》中写道,“衣五人终岁用千五百不足四百五十”。而在甘肃居延出土的汉简中, 有“相除以负百二十四算” 、“负二千二百四十五算” 、“ 负四算, 得七算, 相除得三算”等类似叙述,这里把“负”与“得”相比,意为缺少、亏空,就是今天负数的雏形。
关于负数的加减法运算法则是在我国古代数学经典著作《九章算术》给出的,其最晚成书于公元前1世纪。
“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之。”这里的“名”就是“号”,“除”就是“减”,“相益”、“相除”就是两数的绝对值“相加”、“相减”,“无”就是“零”。
用现在的话说就是:“正负数的加减法则是:同符号两数相减,等于其绝对值相减,异号两数相减,等于其绝对值相加。零减正数得负数,零减负数得正数。异号两数相加,等于其绝对值相减,同号两数相加,等于其绝对值相加。零加正数等于正数,零加负数等于负数。”
刘徽(约225-295)在注释《九章算术》时,给出负数解释,“两算得失相反,要令正负以名之。”意为在计算过程中遇到具有相反意义的量,应用正负数加以区分。他还第一次给出区分正负数的方法:“正算赤,负算黑;否则以邪正为异。”即在算筹运算中,用红筹表示正数,用黑筹表示负数;亦可用斜放小竹棍表示负数,用正放小竹棍表示正数。
这段关于正负数的运算法则的叙述是完全正确的,与现在的法则完全一致!负数的引入是我国数学家杰出的贡献之一。
用不同颜色的数表示正负数的习惯,一直保留到现在。现在一般用红色表示负数,报纸上登载某国经济上出现赤字,表明支出大于收入,财政上亏了钱。
负数是正数的相反数。在实际生活中,我们经常用正数和负数来表示意义相反的两个量。夏天武汉气温高达42°C你会想到武汉的确象火炉,冬天哈尔滨气温-32°C一个负号让你感到北方冬天的寒冷。
在现今的中小学教材中,负数的引入,是通过温度引入的,这种引入方法可以在具体的情景中给出负数的直观理解。而在古代数学中,负数常常是在代数方程的求解过程中产生的。对古代巴比伦的代数研究发现,巴比伦人在解方程中没有提出负数根的概念,即不用或未能发现负数根的概念。3世纪的希腊学者丢番图的著作中,也只给出了方程的正根。
然而,在中国的传统数学中,已较早形成负数和相关的运算法则。
除《九章算术》定义有关正负运算方法外,东汉末年的刘洪(约130-210)和宋代杨辉也论及了正负数加减法则,皆与《九章算术》一致。尤为称道的是,朱世杰(1249-1314)在其1299年问世的《算学启蒙》中给出正负数的乘除法则:
同名相乘为正,异名相乘为负,同名相除所得为正, 异名相除所得为负.
这里的乘除运算已是今天的乘除了。