所谓质数或称素数,就是一个正整数,除了本身和
1
以外并没有任何其他因子。例如
2,3,5,7
是质数,而
4,6,8,9
则不是,后者称为合成数。从这个观点可将整数分为两种,一种叫质数,一种叫合成数。(有人认为数目字
1
不该称为质数)著名的高斯「唯一分解定理」说,任何一个整数。可以写成一串质数相乘的积
古老的筛法可快速求出100000000以内的所有素数。
筛法,是求不超过自然数N(N>1)的所有质数的一种方法。据说是古希腊的埃拉托斯特尼(Eratosthenes,约公元前274~194年)发明的,又称埃拉托斯特尼筛子。
具体做法是:先把N个自然数按次序排列起来。1不是质数,也不是合数,要划去。第二个数2是质数留下来,而把2后面所有能被2整除的数都划去。2后面第一个没划去的数是3,把3留下,再把3后面所有能被3整除的数都划去。3后面第一个没划去的数是5,把5留下,再把5后面所有能被5整除的数都划去。这样一直做下去,就会把不超过N的全部合数都筛掉,留下的就是不超过N的全部质数。因为希腊人是把数写在涂腊的板上,每要划去一个数,就在上面记以小点,寻求质数的工作完毕后,这许多小点就像一个筛子,所以就把埃拉托斯特尼的方法叫做“埃拉托斯特尼筛”,简称“筛法”。(另一种解释是当时的数写在纸草上,每要划去一个数,就把这个数挖去,寻求质数的工作完毕后,这许多小洞就像一个筛子。)
1. 判断一个数是不是质数是看它的因数的个数来定的,如果只有1和它本身两个因数,这个数就是质数.
2.
先要记住100以内的质数
3.
给定你一个数要你来判断,先看哪个数的平方刚好超过它,再把比这个数小的质数去除,如果都不是它的因数的话,这个数就是质数
简单地说就是
(1)只有1和他本身两个因数的叫质数。如3,只有1和3两个因数。
(2)除了1和他本身两个因数外还有别的因数的数叫合数。如4,有1,2,4三个因数。
这是我的一点经验,不知对你有没有帮助。
筛选法又称筛法,具体做法是:先把N个自然数按次序排列起来。1不是质数,也不是合数,要划去。第二个数2是质数留下来,而把2后面所有能被2整除的数都划去。2后面第一个没划去的数是3,把3留下,再把3后面所有能被3整除的数都划去。3后面第一个没划去的数是5,把5留下,再把5后面所有能被5整除的数都划去。这样一直做下去,就会把不超过N的全部合数都筛掉,留下的就是不超过N的全部质数。因为希腊人是把数写在涂腊的板上,每要划去一个数,就在上面记以小点,寻求质数的工作完毕后,这许多小点就像一个筛子,所以就把埃拉托斯特尼的方法叫做“埃拉托斯特尼筛”,简称“筛法”。(另一种解释是当时的数写在纸草上,每要划去一个数,就把这个数挖去,寻求质数的工作完毕后,这许多小洞就像一个筛子。)
不用背100以内的质数