请问狄利克雷函数是处处不可导函数吗?

2024-12-19 21:23:09
推荐回答(2个)
回答1:

是的,因为狄利克雷函数点点不连续,所以处处不可导。其函数图像理论上客观存在,但无法画出确切图形。
狄利克雷函数是一个定义在实数范围上、值域不连续的函数。狄利克雷函数的图像以Y轴为对称轴,是一个偶函数,它处处不连续,处处极限不存在,不可黎曼积分。这是一个处处不连续的可测函数。

基本性质

1、定义域为整个实数域R

2、值域为{0,1}

3、函数为偶函数

4、无法画出函数图像,但是它的函数图像客观存在

5、以任意正有理数为其周期,无最小正周期(由实数的连续统理论可知其无最小正周期)

分析性质

1、处处不连续

2、处处不可导

3、在任何区间内黎曼不可积

4、函数是可测函数

5、在单位区间[0,1]上勒贝格可积,且勒贝格积分值为0(且任意区间以及R上甚至任何R的可测子集上(区间不论开闭和是否有限)上的勒贝格积分值为0 )

对性质5的说明:虽然m(R/Q)=+∞,但在R/Q上有f(x)=0,符合可积条件(说明中Q为有理数集)[1]。

函数周期

狄里克雷函数是周期函数,但是却没有最小正周期,它的周期是任意负有理数和正有理数。因为不存在最小负有理数和正有理数,所以狄里克莱函数不存在最小正周期。

回答2:

问题是,题中讨论的不是狄利克雷函数D(x) 而是x2D(x) 这是一个经典例子,仅在一点连续和可导,好好研究它吧!