f(x)= 1/x => f(-1)= -1
f'(x) = -1/x^2 => f'(-1)/1!= -1
f''(x) = 2/x^3 => f''(-1)/2!= -1
f'''(x) = -6/x^4 => f'''(-1)/3!=-1
...
f^(n)(x) = (-1)^n . n!/x^(n+1) => f^(n)(-1)/n!=-1
f(x) = f(-1)+ [f'(-1)/1!](x+1) +[f''(-1)/2!](x+1)^2+...+[f^(n)(-1)/n!](x+1)^n +...
1/x
=-1- (x+1) -(x+1)^2 -...-(x+1)^n -.....