(1)当a=-3时,f(x)≥3 即|x-3|+|x-2|≥3,即①
,或②
x≤2 3?x+2?x≥3
,
2<x<3 3?x+x?2≥3
或③
.
x≥3 x?3+x?2≥3
解①可得x≤1,解②可得x∈?,解③可得x≥4.
把①、②、③的解集取并集可得不等式的解集为 {x|x≤1或x≥4}.
(2)原命题即f(x)≤|x-4|在[1,2]上恒成立,等价于|x+a|+2-x≤4-x在[1,2]上恒成立,
等价于|x+a|≤2,等价于-2≤x+a≤2,-2-x≤a≤2-x在[1,2]上恒成立.
故当 1≤x≤2时,-2-x的最大值为-2-1=-3,2-x的最小值为0,
故a的取值范围为[-3,0].