方法一:
方法二:
∫(1/x^2)根号[(1-x)/(1+x)] dx
因[(1-x)/(1+x)] >=0
x属于(-1,1]
定x=cosa a属于[0,pai)
则1/x^2=sec^2a
根号[(1-x)/(1+x)] =(1-cosa)/sina
dx=dcosx=-sinxdx
所以∫(1/x^2)根号[(1-x)/(1+x)] dx
=-∫[(1-cosa)/sina]*sina/cos^2ada
=-∫[(1-cosa)/cos^2ada
=-∫(sec^2a-seca)da
=-(tga-ln|seca+tga|)+C
=-tga+ln|seca+tga|+C
=-根号(1-x^2)/x+ln|1/x+根号(1-x^2)/x|+C