证明:在正方形ABCD中,AB=AD,∠ABG=∠DAF=90°,
∵DE⊥AG,
∴∠2+∠EAD=90°,
又∵∠1+∠EAD=90°,
∴∠1=∠2,
在△ABG和△DAF中,
,
∠1=∠2 AB=AD ∠ABG=∠DAF=90°
∴△ABG≌△DAF(ASA),
∴AF=BG,AG=DF,∠AFD=∠BGA,
∵AG=DE+HG,AG=DE+EF,
∴EF=HG,
在△AEF和△BHG中,
,
AF=BG ∠AFD=∠BGA EF=HG
∴△AEF≌△BHG(SAS),
∴∠1=∠3,
∴∠2=∠3,
∵∠2+∠CDE=∠ADC=90°,
∠3+∠ABH=∠ABC=90°,
∴∠ABH=∠CDE.