解:f(x)=5/2sin2x-5√3/2(1+cos2x)+5√3/2 =5/2sin2x-5√3/2cos2x =5sin(2x-π/3) 所以f(x)的最小正周期为T=2π/2=π 令2x-π/3 ∈[2kπ-π/2,2kπ+π/2] 可得递增区间 [kπ-π/12,kπ+5π/6]; f(x)=5sin(2x-π/3)=5sin[2(x-π/6)] 函数图像可由y=5sin2x向右移动π/6得到。