1x2+2x3+3x4+…+n(n+1)=1x(1+1)+2x(2+1)+3x(3+1)+…n(n+1)=(1^2+2^2+3^2+…+n^2)+(1+2+3+…+n)=n(n+1)(2n+1)/6+n(n+1)/2=n(n+1)[(2n+1)+3]/61x2+2x3+3x4+…+10x11=10x(10+1)x[(10x2+1)+3]/6=110x4=440
(1)=2+6+12+20+30+42+56+72+90+110=440
108505100
用机算器吧