1x2+2x3+3x4+…+10x11=?

2024-12-16 13:40:10
推荐回答(4个)
回答1:

1x2+2x3+3x4+…+n(n+1)
=1x(1+1)+2x(2+1)+3x(3+1)+…n(n+1)
=(1^2+2^2+3^2+…+n^2)+(1+2+3+…+n)
=n(n+1)(2n+1)/6+n(n+1)/2
=n(n+1)[(2n+1)+3]/6

1x2+2x3+3x4+…+10x11
=10x(10+1)x[(10x2+1)+3]/6
=110x4
=440

回答2:

(1)=2+6+12+20+30+42+56+72+90+110=440

回答3:

108505100

回答4:

用机算器吧