let
x=tanu
dx=(secu)^2 du
x=1, u=π/4
x=√3, u=π/3
∫(1->√3) dx/[x.√(1+x^2)]
=∫(π/4->π/3) (secu)^2 du/[tanu.secu]
=∫(π/4->π/3) (secu/tanu) du
=∫(π/4->π/3) cscu du
=[ln|cscu -cotu|]|(π/4->π/3)
=ln|2√3/3 - √3/3| - ln|√2 - 1|
=ln|√3/3| - ln|√2 - 1|
=-(1/2)ln3 - ln|√2 - 1|