齐次线性方程是什么?和非齐次的区别

2024-12-12 23:36:46
推荐回答(4个)
回答1:

在一个线性代数方程中,如果其常数项(即不含有未知数的项)为零,就称为齐次线性方程。

区别:

1、常数项不同:

齐次线性方程组的常数项全部为零,非齐次方程组的常数项不全为零。

2、表达式不同:

齐次线性方程组表达式 :Ax=0;非齐次方程组程度常数项不全为零:  Ax=b。

扩展资料: 

齐次线性方程组求解步骤:

1、对系数矩阵A进行初等行变换,将其化为行阶梯形矩阵;

2、若r(A)=r=n(未知量的个数),则原方程组仅有零解,即x=0,求解结束;

若r(A)=r

3、继续将系数矩阵A化为行最简形矩阵,并写出同解方程组;

4、选取合适的自由未知量,并取相应的基本向量组,代入同解方程组,得到原方程组的基础解系,进而写出通解。

参考资料来源:百度百科-齐次线性方程    

参考资料来源:百度百科-非齐次线性方程组

回答2:

一、齐次方程:方程中所有【项】都是《相同》次数的。(对常规的形式来说,就是常数项【都】为零而未知数都是相同次数的方程。)

二、区别:

1、含义不同:

在一个线性代数方程中,如果其常数项(既不含有未知数的项)为零,就称为齐次线性方程。如果常数项不为零的话或者不全为0,那么该线性方程为非齐次线性方程。

2、表达是不同:

齐次线性方程组:齐次线性方程组的表达式为Ax=0;

非齐次线性方程组:非齐次线性方程组的表达式为Ax=b。

非齐次线性方程组Ax=b的求解:

(1)对增广矩阵B施行初等行变换化为行阶梯形。若R(A)

(2)若R(A)=R(B),则进一步将B化为行最简形。

(3)设R(A)=R(B)=r;把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示,并令自由未知数分别等于,即可写出含n-r个参数的通解。 

以上内容参考:百度百科-非齐次线性方程组

回答3:

齐次方程:方程中所有【项】都是《相同》次数的。(对常规的形式来说,就是常数项【都】为零而未知数都是相同次数的方程。)

非齐次方程:方程中有《某些项》次数与其它项【不同】。(一般《线性非齐次方程》指的就是常数项不全为零的那种。因为常数是变量的【零次方】的形式。)

回答4: