复数和共轭复数的运算

2025-01-24 14:59:36
推荐回答(3个)
回答1:

首先你要知道:对于复数x,y,有(x/y)的共轭=x的共轭/y的共轭,(x-y)的共轭=x的共轭-y的共轭,对于加法和乘法也有类似结论,你可以通过设x=a+bi,y=c+di,然后算一算便可轻松证明这个结论。
另外,对于复数z,z的模的平方=z*z的共轭,这个证明也很简单
已知x=(a-z)/(1+a的共轭*z的共轭)
两边同取共轭得x的共轭=(a的共轭-z的共轭)/(1+a*z)
两式相乘得:利用z*z的共轭=z的模的平方=1化简一下你会发现分子分母一样了,这里省略了一点简单的计算,很抱歉,如需要我之后可以补上
因为分子分母一样了,所以结果为x的模=1,即B选项

回答2:

其实涉及到两个复数相乘的共轭等于两个复数各自取共轭后的乘积,具体用(a+bj)(c+dj)可以自己验证一下。当然,用极坐标会更方便。

回答3:

-(√3*i)/(1+i)=√3(1-i)/2