ln(1+x)=∫[1/(1+x)]dx
=∫(1-x+x^2-x^3+……+x^n+……)dx
=x-(x^2/2)+(x^3/3)-(x^4/4)+……+[(-1)^(n+1)](x^n/n)+……
则可知
(1+x)ln(1+x)
=x+[(x^2/2)-(x^3/6)+……+(-1)^n(x^n/n(n-1))+……]
=x+∑(-1)^n(x^n/n(n-1)) n=2,3,...
x∈(-1,1)
………………
f(x) = x/√(1+x^2)
= [√(1+x^2)]'
= [1+x^2/2-x^4/(2*4)+x^6/(2*4*6)-x^8/(2*4*6*8)+......]'
= x-x^3/2+x^5/(2*4)-x^7/(1*4*6)+......
(-1≤x≤1)