解:设复数为z=x+yi(x,y为实数)有(x+yi)³=8,得:x³+3x²yi-3xy²-y³i=8,则有x³-3xy²=8,3x²y-y³=0;x=-1,y=±√3;z=-1+√3i或z=-1-√3i
z^3-8=0z^3=8= 8[cos(2kπ) + isin(2kπ) ]z = 2√2[cos(2kπ/3) + isin(2kπ/3) ] ; k=0,1,2