求函数定义域和值域有哪些方法?(详细说明)

2024-12-16 15:11:58
推荐回答(3个)
回答1:

定义域是函数y=f(x)中的自变量x的范围。
求函数的定义域需要从这几个方面入手:
(1),分母不为零
(2)偶次根式的被开方数非负。
(3),对数中的真数部分大于0。
(4),指数、对数的底数大于0,且不等于1
(5)。y=tanx中x≠kπ+π/2,
y=cotx中x≠kπ等等。
值域是函数y=f(x)中y的取值范围。
常用的求值域的方法:
(1)化归法;(2)图象法(数形结合),
(3)函数单调性法,
(4)配方法,(5)换元法,(6)反函数法(逆求法),(7)判别式法,(8)复合函数法,(9)三角代换法,(10)基本不等式法等

回答2:

定义域:首先要明白每个基本函数的定义域。复合函数中,要考虑到是函数有意义(比如分母不为零,根号下为非负数等等)
值域:1.根据单调性
2.求反函数,看反函数的定义域
3.利用不等式(最常用的是均值,慎用,需考虑各项正负和取等条件)
4.复合函数中,利用已知函数值域求未知函数值域
5.换元法(通常是三角换元,换元时注意换与被换两者的范围一定要相同)
6.利用几何性质(比如斜率,两点间距离之类的)
能想到的就这么多,随便想的,没有顺序。
一个函数,求值域的方法会有很多,要灵活运用,寻求最优解法。

回答3:

先求定义域,再根据定义域求值域。

定义域要考虑到,X,Y等是否符合题意,(总之要慢一点做,认真审题),有时不仅是X,Y,还可能有其他约束条件。

想熟练地求定义域,必须熟练各种函数的特征,然后在许多函数组合时才不会蒙。