两边同时积分,微分方程

2025-04-05 20:22:34
推荐回答(4个)
回答1:

左边的分式可以拆开:
原式=(3/2)/(1-u²)+[u/(1-u²)]
再把左边那一项继续拆开成两个单项式得到:
(3/2)/(1-u²)=(3/4)[1/(1-u)+1/(1+u)]
最后待积分式就分成了三个部分,分别积分:
①(3/4)[1/(1-u)] -> (-3/4)ln|1-u|
②(3/4)[1/(1+u)] -> (3/4)ln|1+u|
③u/(1-u²) -> (-1/2)ln|1-u²|(这个要用第一类换元积分法,把分子上u放到微分号后)
把这三部分凑起来就是左侧的积分结果,剩下的就是消去对数函数之类的,不再赘述,提醒别忘了加上任意常数。

回答2:

答案:
左边的分式可以拆开:
原式=(3/2)/(1-u²)+[u/(1-u²)]
再把左边那一项继续拆开成两个单项式得到:
(3/2)/(1-u²)=(3/4)[1/(1-u)+1/(1+u)]
最后待积分式就分成了三个部分,分别积分:
①(3/4)[1/(1-u)] -> (-3/4)ln|1-u|
②(3/4)[1/(1+u)] -> (3/4)ln|1+u|
③u/(1-u²) -> (-1/2)ln|1-u²|(这个要用第一类换元积分法,把分子上u放到微分号后)
把这三部分凑起来就是左侧的积分结果,剩下的就是消去对数函数之类的,不再赘述,提醒别忘了加上任意常数。望采纳

回答3:

回答4: