证明:设0<x1<x2,则有f(x1)-f(x2)=(x12? 1 x1 )-(x22? 1 x2 )=(x1-x2)(x1+x2)-( 1 x1 ? 1 x2 )=(x1-x2)(x1+x2+ 1 x1x2 ),∵0<x1<x2,∴x1-x2<0,x1+x2+ 1 x1x2 >0,所以f(x1)-f(x)<0,即f(x1)<f(x2)所以函数f(x)=x2? 1 x 在区间(0,+∞)上是单调递增函数.