圆的特点:
1.圆有无数条半径和无数条直径,且同圆内圆的半径长度永远相同。
2.圆是轴对称、中心对称图形。
3.对称轴是直径所在的直线。
4.是一条光滑且封闭的曲线,圆上每一点到圆心的距离都是相等,到圆心的距离为R的点都在圆上。
扩展资料:
一、圆的一般方程
方程x2+y2+Dx+Ey+F=0可变形为(x+D/2)2+(y+E/2)2=(D2+E2-4F)/4.故有:
1、当D2+E2-4F>0时,方程表示以(-D/2,-E/2)为圆心,以
为半径的圆;
2、当D2+E2-4F=0时,方程表示一个点(-D/2,-E/2);
3、当D2+E2-4F<0时,方程不表示任何图形。
二、圆的参数方程:
以点O(a,b)为圆心,以r为半径的圆的参数方程是 x=a+r·cosθ, y=b+r·sinθ, (其中θ为参数)
圆的端点式:
若已知两点A(a1,b1),B(a2,b2),则以线段AB为直径的圆的方程为 (x-a1)(x-a2)+(y-b1)(y-b2)=0
圆的离心率e=0,在圆上任意一点的曲率半径都是r。
经过圆 x2+y2=r2上一点M(a0,b0)的切线方程为 a0·x+b0·y=r2
在圆(x2+y2=r2)外一点M(a0,b0)引该圆的两条切线,且两切点为A,B,则A,B两点所在直线的方程也为 a0·x+b0·y=r2。
三、割线定理
割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。
一条直线与一条弧线有两个公共点,我们就说这条直线是这条曲线的割线。
与割线有关的定理有:割线定理、切割线定理。常运用于有关于圆的题中。
参考资料来源:百度百科-圆
圆的特点:是一条光滑且封闭的曲线,圆上每一点到圆心的距离都是相等,到圆心的距离为R的点都在圆上,也就是说圆上的点没有一点到圆心的距离不相等。
圆是圆柱横断面上外围点排列一周的封闭曲线;而正6x2ⁿ边形是棱柱横断面上外围点排列一周的封闭折线。。人们俗称“削的没有旋的圆”其实意义就是说:在同一个平面上端点与端点围绕定点旋转排列成一周的弧为圆。
如果采用正6x2ⁿ边形无限倍边能成“圆”,那么这样的“圆”与圆的定义还有意义吗?
圆的特性:
1.圆心到圆上各点的距离都相等.
2.圆的面积=πr^2,圆的周长=2πr
3.圆是轴对称图形,有无数条对称轴,切对称轴都是经过圆心的直线
4.圆也是中心对称图形,它的对称中心在圆心
圆上每一点到圆心的距离都相等。