解:
2a(n+1)-an=n
a(n+1)=½an+½n=½an+(n+1)-½n-2+1
[a(n+1)-(n+1)+2]=½(an-n+2)
[a(n+1)-(n+1)+2]/(an-n+2)=½,为定值
a1-1+2=½-1+2=3/2
数列{an-n+2}是以3/2为首项,½为公比的等比数列
an-n+2=(3/2)·½ⁿ⁻¹=3·½ⁿ
an=3·½ⁿ+n-2
bn=a(n+1)-an-1
=3·½ⁿ⁺¹+(n+1)-2-(3·½ⁿ+n-2)-1
=-3·½ⁿ⁺¹
数列{bn}的通项公式为bn=-3·½ⁿ⁺¹
Sn=a1+a2+...+an
=3·(½+½²+...+½ⁿ)+(1+2+...+n)-2n
=3·½·(1-½ⁿ)/(1-½)- n(n+1)/2 -2n
=½(6-6·½ⁿ-n²-5n)
a1=1/2
an+1=n/2+an/2=n/2+1/2{an-1/2+(n-1)/2}=........=n/2+n-1/4+n-2/8+....+1/2^n+a1/2^n 注意an+1前面共n项
an=n-1/2+n-2/2^2+.....1/2^n-1+a1/2^n-1
验算完全正确
bn=an+1-an=1/2+1/4+....1/2^n-1+1/2^n-a1/2^n=1-1/2^n-1/2^n+1
2an-an-1=n-1,2an-1-an-2=n-2,.....2a2-a1=1 把这些式子统统相加得到Sn+an-a1=(n-1)n/2
Sn=(n-1)n/2+1/2-an