cos(θ+π/6)=5/13 θ∈(0,π/2),
sin(θ+π/6)=12/13
cosθ
=cos(θ+π/6-π/6)
=cos(θ+π/6)cos(π/6)+sin(θ+π/6)sin(π/6)
=5/13*√3/2+12/13x1/2
=(5√3+12)/26
cosθ=(5√3+12)/26
先计算出sin(θ+π/6)=12/13,在利用公式cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
cosθ=cos[(θ+π/6)-π/6]
=cos(θ+π/6)cos(π/6)+sin(θ+π/6)sin(π/6)
=5/13*√3/2+12/13x1/2
=(5√3+12)/26
根据此题目,我们可以发现类似的的三角函数数值计算,在高中大多数都是巧妙地利用cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ -cosαsinβ
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)这些公式之间的变换来间接求出题目所要求的结果。