小数,整数,负数,自然数,整数,分数,因数,质数,合数,技术,偶数,倍数的概念

2024-12-04 20:19:47
推荐回答(5个)
回答1:

小数:小数由整数部分、小数部分和小数点组成。当测量物体时往往会得到的不是整数的数,古人就发明了小数来补充整数 小数是十进制分数的一种特殊表现形式。分母是10、100、1000……的分数可以用小数表示。所有分数都可以表示成小数,小数中除无限不循环小数外都可以表示成分数。无理数为无限不循环小数。
整数: 整数(Integer):像-2,-1,0,1,2这样的数称为整数。(整数是表示物体个数的数,0表示有0个物体)整数是人类能够掌握的最基本的数学工具。整数的全体构成整数集,整数集合是一个数环。在整数系中,自然数为正整数,称0为零,称-1、-2、-3、…、-n、… (n为整数)为负整数。正整数、零与负整数构成整数系。
一个给定的整数n可以是负数(n∈Z-),非负数(n∈Z*),零(n=0)或正数(n∈Z+).
自然数:用以计量事物的件数或表示事物次序的数 。 即用数码0,1,2,3,4,……所表示的数 。表示物体个数的数叫自然数,自然数由0开始(包括0), 一个接一个,组成一个无穷的集体。
分数:把单位"1"平均分成若干份,表示这样的一份或几份的数叫分数。表示这样的一份的数叫分数单位。
因数和倍数:整数A能被整数B整除,A叫做B的倍数,B就叫做A的因数或约数,
质数:质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。
合数:一个数如果除了一和他本身还有别的因数,这样的数叫合数
奇数和偶数:整数中,能被2整除的数是偶数,不能被2整除的数是奇数,偶数可用2k表示,奇数可用2k+1表示,这里k是整数。

回答2:

自然数

用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10……叫做自然数。

整数

自然数都是整数,整数不都是自然数。

小数

小数是特殊形式的分数。但是不能说小数就是分数。

混小数(带小数)

小数的整数部分不为零的小数叫混小数,也叫带小数。

纯小数

小数的整数部分为零的小数,叫做纯小数。

循环小数

小数部分一个数字或几个数字依次不断地重复出现,这样的小数叫做循环小数。例如:0.333……,1.2470470470……都是循环小数。

纯循环小数

循环节从十分位就开始的循环小数,叫做纯循环小数。例如: , 。

混循环小数

与纯循环小数有唯一的区别:不是从十分位开始循环的循环小数,叫混循环小数。例如, , 。

有限小数

小数的小数部分只有有限个数字的小数(不全为零)叫做有限小数。

无限小数

小数的小数部分有无数个数字(不包含全为零)的小数,叫做无限小数。循环小数都是无限小数,无限小数不一定都是循环小数。例如,圆周率π也是无限小数。

分数

表示把一个“单位1”平均分成若干份,取其中的一份或几份的数,叫做分数。(分成0份在此不讨论)

真分数

分子比分母小的分数叫真分数。

假分数

分子比分母大,或者分子等于分母的分数叫做假分数。(分母、分子为零在此不讨论)

带分数

一个整数(零除外)和一个真分数组合在一起的数,叫做带分数。带分数也是假分数的另一种表示形式,相互之间可以互化。

关于 (n表示自然数)是否是分数

数是由数字和数位组成。

0的意义

0既可以表示“没有”,也可以作为某些数量的界限。如温度等。0是一个完全有确定意义的数。

0是一个数。

0是一个偶数。

0是任何自然数(0除外)的倍数。

0有占位的作用。

0不能作除数。

0是中性数。

约数和倍数

当甲数能被乙数整除时,就说甲数是乙数的倍数,乙数是甲数的约数。这两个概念都是相对而存在。一个自然数,不存在是否倍数与约数。例如:“3是约数”,就是一个错误说法。只能是对3、6、9、……等数而言,是其中某个数的约数。

奇数与偶数

凡是能被2整除的数叫偶数,反之,不能被2整除的数叫奇数。

质数(素数)与合数

一个数的约数只有1和它本身的数叫做质数,也叫素数。反之,一个数的约数除了1和它本身以外,还有其他的约数,这个数就叫合数。

1是否质数

由于1的约数只有1个,所以1既不是质数,也不是合数。

公约数

几个数公有的约数,叫做公约数。

它的个数是有限的,既有最大的,也有最小的。

互质数

两个数的公约数只有1,而没有其他公约数的,这两个数就叫互质数。

质数与互质数

这两个概念没有什么联系。两个质数,不能肯定就是互质数。只有两个不相同的质数,才能肯定是互质数。另外,两个合数既可能是互质数,也可能不是互质数,但不能说两个合数一定不是互质数。

质因数

把一个合数分解成几个质数相乘的形式,这样的质数叫做质因数。

分解质因数

把一个合数分解成几个质数相同的形式,就叫做分解质因数。

公倍数

几个数公有的倍数,叫做公倍数。它的个数是无限的,只有最小的,没有最大的。

最大公约数

几个数公有的约数中,最大的一个就叫做这几个数的最大公约数。

最小公倍数

几个数公有的无限个倍数中,最小的一个,就叫做这几个数的最小公倍数。
能被2整除的判断方法

一个数能否被2整除,只要看这个数的末尾是否有0、2、4、6、8这五个数的其中一个即可。

能被5整除的判断方法

一个数能否被5整除,只要看这个数的末尾是否有0、5这两个数的其中一个即可。

能被3整除的判断方法

一个数能否被3整除,只要看这个数的各个数位上数字的和能否被3整除自然数

用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10……叫做自然数。

整数

自然数都是整数,整数不都是自然数。

小数

小数是特殊形式的分数。但是不能说小数就是分数。

混小数(带小数)

小数的整数部分不为零的小数叫混小数,也叫带小数。

纯小数

小数的整数部分为零的小数,叫做纯小数。

循环小数

小数部分一个数字或几个数字依次不断地重复出现,这样的小数叫做循环小数。例如:0.333……,1.2470470470……都是循环小数。

纯循环小数

循环节从十分位就开始的循环小数,叫做纯循环小数。例如: , 。

混循环小数

与纯循环小数有唯一的区别:不是从十分位开始循环的循环小数,叫混循环小数。例如, , 。

有限小数

小数的小数部分只有有限个数字的小数(不全为零)叫做有限小数。

无限小数

小数的小数部分有无数个数字(不包含全为零)的小数,叫做无限小数。循环小数都是无限小数,无限小数不一定都是循环小数。例如,圆周率π也是无限小数。

分数

表示把一个“单位1”平均分成若干份,取其中的一份或几份的数,叫做分数。(分成0份在此不讨论)

真分数

分子比分母小的分数叫真分数。

假分数

分子比分母大,或者分子等于分母的分数叫做假分数。(分母、分子为零在此不讨论)

带分数

一个整数(零除外)和一个真分数组合在一起的数,叫做带分数。带分数也是假分数的另一种表示形式,相互之间可以互化。

关于 (n表示自然数)是否是分数

数是由数字和数位组成。

0的意义

0既可以表示“没有”,也可以作为某些数量的界限。如温度等。0是一个完全有确定意义的数。

0是一个数。

0是一个偶数。

0是任何自然数(0除外)的倍数。

0有占位的作用。

0不能作除数。

0是中性数。

约数和倍数

当甲数能被乙数整除时,就说甲数是乙数的倍数,乙数是甲数的约数。这两个概念都是相对而存在。一个自然数,不存在是否倍数与约数。例如:“3是约数”,就是一个错误说法。只能是对3、6、9、……等数而言,是其中某个数的约数。

奇数与偶数

凡是能被2整除的数叫偶数,反之,不能被2整除的数叫奇数。

质数(素数)与合数

一个数的约数只有1和它本身的数叫做质数,也叫素数。反之,一个数的约数除了1和它本身以外,还有其他的约数,这个数就叫合数。

1是否质数

由于1的约数只有1个,所以1既不是质数,也不是合数。

公约数

几个数公有的约数,叫做公约数。

它的个数是有限的,既有最大的,也有最小的。

互质数

两个数的公约数只有1,而没有其他公约数的,这两个数就叫互质数。

质数与互质数

这两个概念没有什么联系。两个质数,不能肯定就是互质数。只有两个不相同的质数,才能肯定是互质数。另外,两个合数既可能是互质数,也可能不是互质数,但不能说两个合数一定不是互质数。

质因数

把一个合数分解成几个质数相乘的形式,这样的质数叫做质因数。

分解质因数

把一个合数分解成几个质数相同的形式,就叫做分解质因数。

公倍数

几个数公有的倍数,叫做公倍数。它的个数是无限的,只有最小的,没有最大的。

最大公约数

几个数公有的约数中,最大的一个就叫做这几个数的最大公约数。

最小公倍数

几个数公有的无限个倍数中,最小的一个,就叫做这几个数的最小公倍数。
能被2整除的判断方法

一个数能否被2整除,只要看这个数的末尾是否有0、2、4、6、8这五个数的其中一个即可。

能被5整除的判断方法

一个数能否被5整除,只要看这个数的末尾是否有0、5这两个数的其中一个即可。

能被3整除的判断方法

一个数能否被3整除,只要看这个数的各个数位上数字的和能否被3整除

回答3:

范菲菲

回答4:

0

回答5:

都是数字