两道高中求证题,急需答案~高手帮帮忙啊!

2024-12-12 06:13:41
推荐回答(1个)
回答1:

一、证明:
(b+c-a)/a+(a+c-b)/b+(a+b-c)/c
=b/a +c/a -1+a/b+c/b-1 +a/c+b/c -1
=(b/a +a/b)+(c/a +a/c)+(c/b +b/c)-3
=(a²源中+b²)/ab+(a²+c²)/ac+(b²+c²)/bc-3
根据:如果a、b、c是全不相等的正实数,a²+b²>2ab.
原式>2+2+2-3
所以 (b+c-a)/a+(a+c-b)/b+(a+b-c)/c > 3

二、ax^是什么? 是ax^2吗?
如果是的话:f(0)为奇数,所以c是个奇数
f(1)是雹岁奇数,a+b+c是奇数。即:a、b同为奇数或同为偶数
用反证法证明
假设存在整数根x,x是奇数或偶数,二者必居其一.
如果x是奇数,a、b同为奇数,则ax^2,bx,c都是奇数,a、b同为偶数,则ax^2,bx是偶数,c是奇数,
ax^2+bx+c是奇数,这与等于零矛盾;
如果x是偶数,不管a、b同为奇数还是同为偶数,则ax^2,bx是偶数,c是源裂睁奇数,
ax^2+bx+c还是奇数,这与等于零矛盾.
所以假设不正确,这个方程无整数根.