求和an=(n+1)⼀(n*2^n)

数列an=(n+1)/(n*2^n),求Sn。急!O(∩_∩)O谢谢!
2024-12-27 20:04:15
推荐回答(3个)
回答1:

我的思路

an/an-1=[(n+1)/(n*2^n)]/[n/((n-1)*2^(n-1))]=(1-1/n^2)/2,

a1=1,a2=1*(1-1/2^2)/2,a3=...,

Sn=1+(1/2)(1-1/2^2)+(1/2)^2(1-1/2^2)(1-1/3^2)+(1/2)^3(1-1/2^2)(1-1/3^2)(1-1/4^2)+...

确实有蛮复杂,^_^

回答2:

1/1*2*3+1/2*3*4+……1/n(n+1)(n+2)
=1/2(1/1*2-1/2*3)+1/2(1/2*3-1/3*4)+...+1/2[1/n(n+1)-1/(n+1)(n+2)]
=1/2[1/1*2-1/2*3+1/2*3-1/3*4+...+1/n(n+1)-1/(n+1)(n+2)]
=1/2[1/1*2-1/(n+1)(n+2)]
=1/2*[(n+1)(n+2)-2]/2(n+1)(n+2)
=(n^2+3n)/4(n+1)(n+2)
=n(n+3)/[4(n+1)(n+2)]

回答3:

叠乘
叠加
叠减

数列都是用这几种方法求和