包络指的是包络线,有很多种,比如,音量,音象,就是在波形或MIDI里的一条线,通过包络线的曲折即时改变各种参数,
包络,形象的说就是许多椭圆形曲线交织,外观看起来是包起来的一样,故名包络。他在数学、信号处理、文学、经济学、传统中医学上都有自己独特的含义。
在数学上,一族平面直线(或曲线)的“包络”(envelope)是指一条与这族直线(或曲线)中任意一条都相切的曲线。假设这族平面曲线记为F(t,x,y),这里不同的t 对应着曲线族中不同的曲线,则包络线上的每一点满足右下端的两条方程,由这两条方程消去t 后便可得出包络线的隐式表示包络线所满足的方程。
类似地可以定义空间中一族平面(或曲面)的包络。
如图1中的直线组成一个圈,然而实际上我们并没有“画”这个圆,这时就把这个圆称作是包络线。
要想画出类似的包络线,首先要画出一个大圆(例如直径10cm),并把圆周分成36等分,用量角器每10°作一点即可。
把第n点与第n+10点连线,就可画出如图1的圆形包络线。如果n+10大于36,则须减去36。例如当n=29时,n+10=39,减去36之后得到3,所以第29点是与第3点连线。