直角三角形已知高度和锐角角度怎么求底边长度

2024-12-27 18:46:39
推荐回答(3个)
回答1:

已知a,x=h÷tana 已知b,x=hXtanb。

这是勾股定理啊,文字表述:在任何一个的直角三角形(Rt△)中,两条直角边的长度的平方和等于斜边长度的平方(也可以理解成两个长边的平方相减与最短边的平方相等)。如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a^2+b^2=c^2。

勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。

勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。

在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他们用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

回答2:

已知a,x=h÷tana,已知b,x=hXtanb。

直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:

性质1:直角三角形两直角边的平方和等于斜边的平方。如图,∠BAC=90°,则AB²+AC²=BC²;(勾股定理)。

性质2:在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°。

性质3:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。

性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。

三角形是由同一平面内不在同一直线上的三条线段“首尾”顺次连接所组成的封闭图形,在数学、建筑学有应用。

常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形)。

按角分有直角三角形、锐角三角形钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。

回答3:

已知a,x=h÷tana

已知b,x=hXtanb