负根号2到正根号2,运用辅助角公式即可
方法一:构造和差化积
这是常用的求值域方法之一:
sina+cosa=√2(sin45°cosa+sinacos45°)
=√2sin(45°+a)
-1<=sin(45°+a)<=1
则。-√2<=sina+cosa=√2sin(45°+a)<=√2
方法二、
先平方再开平方
sina+cosa=
±√(sina+cosa)^2
=±√(1+sin2a)
0<1+sin2a<=2
0<=√(1+sin2a)<=√2
-√2<=±√(1+sin2a)=sina+cosa<=√2
sinα+cosα
=√2(sinα*√2/2+cosα*√2/2)
=√2(sinαcosπ/4+cosαsinπ/4)
=√2sin(α+π/4)
-1<=sin(α+π/4)<=1
所以-√2<=sinα+cosα<=√2