倒序相加:例Sn=1+2+3+……+n
所以2Sn=(1+n)+……+(n+1)=n(n+1)[有n 个相加]
Sn=n(n+1)/2
错位相减法:例Sn=1/2+1/2^2+……+1/2^n
所以(1/2)Sn=1/2^2+1/2^3+1/2^n+1/2^(n+1)
既Sn-(1/2)Sn=(1/2)Sn=1/2-1/2^(n+1),
既Sn=1-1/2^n
裂相相消法:例Sn=1/2+1/6+1/12……1/(n-1)n
则Sn=(1-1/2)+(1/2-1/3)+(1/3-1/4)……+[1/(n-1)-1/n]
既Sn=1-1/n