如何将循环小数转化成分数的方法,现介绍如下:
1.循环小数0.7272……循环节为7,2两位,因此化为分数为72/99=1/8.即有几位循环数字就除以几个9。又如0.123123……循环节为1,2,3三位,因此化为分数为123/999=41/333.
这种方法只适用于从小数点后第一位就开始循环的小数,如果不是从第一位就开始循环的小数,必须用下面的方法。
2.循环小数0.41666……先把0.41666……乘以100得41.666……,可以理解为41+0.666……,所以写成分数为41+6/9=41+2/3=125/3.因为开始乘以了100,所以再除以100,即125/3÷100=125/300=5/12.
有限小数可以化成分数,那么循环小数怎样化成分数呢?
日本野口哲典在《天哪!数学原来可以这样学》中介绍了如何将循环小数转化成分数的方法,现介绍如下:
1.循环小数0.7272……循环节为7,2两位,因此化为分数为72/99=1/8.即有几位循环数字就除以几个9。又如0.123123……循环节为1,2,3三位,因此化为分数为123/999=41/333.
这种方法只适用于从小数点后第一位就开始循环的小数,如果不是从第一位就开始循环的小数,必须用下面的方法。
2.循环小数0.41666……先把0.41666……乘以100得41.666……,可以理解为41+0.666……,所以写成分数为41+6/9=41+2/3=125/3.因为开始乘以了100,所以再除以100,即125/3÷100=125/300=5/12.
快尝试一下吧。
主要就是这样的几个典型:
0.1111……=1/9
0.22222……=2/9
0.333333……=3/9
不难发现,这些都是由9为分母的,然后就是分子是这些循环的数字
还有就是混杂的如:
0.2777777……=(27-2)/90
0.3222222……=(32-3)/90
这也不难发现是前面有几位杂的,分母就在9后面加几个0,分子就是杂的加一位循环的减去杂的~
再如:
0.232323……=23/99
0.546546546……=546/9990.89898989=89/99
就是分母是有哪几位循环的就几个9,分子就是循环的数
就应该是这样了,这种东西很难书面表达,所以原谅我说的不是太清楚,不过你领略一下就能懂了,就这几个规律