可以利用等差数列的相关知识进行简便运算。
“121+123+125+127+129+131+133+135+137”的加数是按照逐项加2的等差数列,因此计算过程可以写作:
121+123+125+127+129+131+133+135+137
=(121+137)×(9÷2)
=258×4.5
=1161
倒序相加法推导前n项和公式:
Sn=a1+a2+a3 +·····+an=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d] ①
Sn=an+an-1+an-2+······+a1=an+(an-d)+(an-2d)+······+[an-(n-1)d] ②
由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n个)=n(a1+an)
∴Sn=n(a1+an)÷2。
等差数列的前n项和等于首末两项的和与项数乘积的一半:
Sn=n(a1+an)÷2=na1+n(n-1)d÷2
Sn=dn2÷2+n(a1-d÷2)
亦可得
a1=2sn÷n-an
an=2sn÷n-a1
有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1
用递等式计算(怎样简便就怎样计算). 5.6×0.85×7.8 4.32×99+4.32 99×3.74 1.25×3.2×0.25 1.2×2.6+3×4.25 1.25×7.2 解:(1)5.6×0.85×7.8 =4.76×7.8 =37.128;(2)4.32×99+4.32 =4.32×(99+1) =4.32×100 =432;(3)99×3.74 =(100-1)×3.74 =100×3.74-3.74 =374-3.74 =370.6;(4)1.25×3.2×0.25 =1.25×8×0.4×0.25 =(1.25×8)×(0.4×0.25) =10×0.1 =1;(5)1.2×2.6+3×4.25 =33.12+12.75 =45.87;(6)1.25×7.2 =1.25×8×0.9 =(1.25×8)×0.9 =10×0.9 =9. 解析:(1)从左往右依次运算;(2)运用乘法分配律简算;(3)把99看作100-1,运用乘法分配律简算;(4)把3.2看作8×0.4,运用乘法结合律简算;(5)先算乘法,再算加法;(6)把7.2看作1.25×8,运用成风结合律简算.
121+123+125+127+129+131+133
=(121+133)×8÷2
=254×4
=1016