设f(x)连续,Y=∫0~X tf(x^2-t^2)dt 则dy⼀dx=?

2024-12-14 07:41:59
推荐回答(2个)
回答1:

简单计算一下即可,答案如图所示

回答2:

y
=
∫[0,x]
t
f(x²
-
t²)
dt
令u
=

-
t²,du
=
-2t
dt
当t
=
0,u
=
x²;当t
=
x,u
=
0
y
=
∫[x²,0]
t
f(u)
*
du/(-2t)
=
1/2
∫[0,x²]
f(u)
du
dy/dx
=
1/2
[2x
*
f(x²)
-
0]
=
x
f(x²)
-------------------------------------------------------------------------------------
楼上的方法也不错。
令z²
=

-
t²,2z
dz
=
-2t
dt
=>
dt
=
-z/t
dz
当t
=
0,z
=
x;当t
=
x,z
=
0
∫[0,x]
t
f(x²
-
t²)
dt
=
∫[x,0]
t
f(z²)
*
(-z/t)
dz
=
∫[x,0]
-z
f(z²)
dz
=
∫[0,x]
z
f(z²)
dz
dy/dx
=
x
f(x²)
-
0
=
x
f(x²)
-------------------------------------------------------------------------------------
两个方法也行,但楼上的替换怎么又会涉及因变量y呢?