急求七年级上奥数题30道 给100!!!!!!!!!!!!!!

简单点105
2024-12-17 13:34:29
推荐回答(1个)
回答1:

1.已知关于x的方程2a(x-1)=(5-a)x+3b有无数多个解,那么a=_____,b=_____.

答:2a(x-1)=(5-a)x+3b
2ax-2a=5x-ax+3b
3ax-5x=2a+3b
x(3a-5)=2a+3b
关于x的方程2a(x-1)=(5-a)x+3b有无数多个解
所以无论X取何值,总成立
所以此方程与X无关
所以 3a-5=0 , 2a+3b=0
a=5/3 , b= -10/9

2.由自然数1~9组成的一切可能的没有重复数字的四位数,这些四位数之和是多少?

答:首先看看一共有多少个四位数。
千位有9种可能,百位有8种,十位有7种,个位有6种。
一共有3024个四位数。

先看个位。由于每个数字的地位是平等的,所以
有九分之一,就是有336个数的个位是1,有336个数的个位是2,有336个数的个位是3,……有336个数的个位是9。
这些所有的个位相加就是336×(1+2+...+9)×1。

再看十位。由于每个数字的地位是平等的,所以
有九分之一,就是有336个数的十位是1,有336个数的十位是2,有336个数的十位是3,……有336个数的十位是9。
这些所有的个位相加就是336×(1+2+...+9)×10。

再看百位。由上面分析可知,所有的百位相加就是336×(1+2+...+9)×100。
再看千位。由上面分析可知,所有的千位相加就是336×(1+2+...+9)×1000。

所以所有的四位数之和,就是:
336×(1+2+...+9)×1+336×(1+2+...+9)×10+336×(1+2+...+9)×100+336×(1+2+...+9)×1000
=336×(1+2+...+9)×(1+10+100+1000)
=336×45×1111
=16798320

给你个奥数网站:
http://www.aoshu.cn/Article_L/Class110List.htm