考研数学真题∫1⼀1-x^2ln(1 x⼀1-x)dx

2024-12-19 20:42:02
推荐回答(1个)
回答1:

答:(1/4)ln²[ (1-x)/(1-x) ] + C

运用凑微分即可。
注意1/(1-x²) dx
= 1/[ (1-x)(1+x) ] dx
= 1/2 * [ (1+x)+(1-x) ]/[ (1-x)(1+x) ] dx
= 1/2 * [ 1/(1-x) + 1/(1+x) ] dx
= 1/2 * d[ ln(1+x) - ln(1-x) ]
= 1/2 * dln[ (1+x)/(1-x) ]
所以∫ 1/(1-x²) * ln[ (1+x)/(1-x) ]
= (1/2)∫ ln[ (1+x)/(1-x) ] dln[ (1+x)/(1-x) ]
= (1/4)ln²[ (1+x)/(1-x) ] + C