(1)令n=1得:
-(-1)S1-3×2=0,即
S
+S1-6=0.
S
∴(S1+3)(S1-2)=0.
∵S1>0,∴S1=2,即a1=2.
(2)由
-(n2+n-3)Sn-3(n2+n)=0得:
S
(Sn+3)[Sn-(n2+n)]=0.
∵an>0(n∈N*),
∴Sn>0.
∴Sn=n2+n.
∴当n≥2时,an=Sn-Sn-1=(n2+n)-[(n-1)2+(n-1)]=2n,
又∵a1=2=2×1,
∴an=2n(n∈N*).
(3)当k∈N*时,∵k(k+
)=k2+1 2
k>k2+1 2
k-1 2
=(k-3 16
)(k+1 4
),3 4
∴
=1
ak(ak+1)
=1 2k(2k+1)
?1 4
<1 k(k+
)1 2
?1 4
1 (k-
)(k+1 4
)3 4
=
[1 4
-1 k-
1 4
].1 (k+1)-
1 4
∴
+1
a1(a1+1)
1
a2(a