求几个大数的最大公约数的简便方法

2024-11-27 09:45:35
推荐回答(2个)
回答1:

求几个数最大公约数的方法,开始时用观察比较的方法,即:先把每个数的约数找出来,然后再找出公约数,最后在公约数中找出最大公约数。

例如:求12与18的最大公约数。

12的约数有:1、2、3、4、6、12。

18的约数有:1、2、3、6、9、18。

12与18的公约数有:1、2、3、6。

12与18的最大公约数是6。

这种方法对求两个以上数的最大公约数,特别是数目较大的数,显然是不方便的。于是又采用了给每个数分别分解质因数的方法。

12=2×2×3
18=2×3×3

12与18都可以分成几种形式不同的乘积,但分成质因数连乘积就只有以上一种,而且不能再分解了。所分出的质因数无疑都能整除原数,因此这些质因数也都是原数的约数。从分解的结果看,12与18都有公约数2和3,而它们的乘积2×3=6,就是 12与18的最大公约数。

采用分解质因数的方法,也是采用短除的形式,只不过是分别短除,然后再找公约数和最大公约数。如果把这两个数合在一起短除,则更容易找出公约数和最大公约数。

从短除中不难看出,12与18都有公约数2和3,它们的乘积2×3=6就是12与18的最大公约数。与前边分别分解质因数相比较,可以发现:不仅结果相同,而且短除法竖式左边就是这两个数的公共质因数,而两个数的最大公约数,就是这两个数的公共质因数的连乘积。
实际应用中,是把需要计算的两个或多个数放置在一起,进行短除,如附图图

回答2:

两个两个求,如
A和B求最大公因数,然后求出来的再和C求,以此类推

或者可以先根据给的数的特点,找出因数倍数之类的,如
2,3,4,5,6的话,2和4取2,3和6取3,(这只是个例子),将数的个数减少,然后再用上面的方法两个两个算

很大的数的话,可以用分解素因数的方法,把这几个数的所有共有的素因数都找出来,然后相乘,就是这几个数的最大公因数了