已知tan(π⼀4 -a)=-3,求值 (1)tana (2) (sin2a-cos눀a)⼀(

已知tan(π/4 -a)=-3,求值 (1)tana (2) (sin2a-cos눀a)/(1+cos2a)
2025-01-31 12:58:01
推荐回答(1个)
回答1:

tan(π/4-α)=-3
∴tanα=tan[π/4-(π/4-α)]
=[1-(-3)]/[1+1×(-3)]
=-2.

(sin2α-cos²α)/(1+cos²α)
=(2sinαcosα-cos²α)/(sin²α+cos²α+cos²α)
=(2sinαcosα-cos²α)/(sin²α+2cos²α)
=[2(sinα/cosα)-1]/[(sinα/cosα)²+2]
=(2tanα-1)/(tan²α+2)
=[2×(-2)-1]/[(-2)²+2]
=-5/6。