已知等差数列{a n }中,公差d>0,前n项和为S n ,a 2 ?a 3 =45,a 1 +a 5 =18.(1)求数列的{a n }通项

2024-12-19 14:54:33
推荐回答(1个)
回答1:

(1)由题设,知{a n }是等差数列,且公差d>0
则由
a 2 a 3 =45
a 1 + a 5 =18
( a 1 +d)( a 1 +2d)=45
a 1 +( a 1 +4d)=18
解得
a 1 =1
d=4

所以a n =4n-3
(2)由bn=
S n
n+c
=
n(1+4n-3)
2
n+c
=
2n(n-
1
2
)
n+c

因为c≠0,故c=-
1
2
,得到bn=2n
因为b n+1 -b n =2(n+1)-2n=2,符合等差数列的定义
所以数列{b n }是公差为2的等差数列.