答案是0
解: m^2=n+2两边乘以m,得m^3=mn+2m;
同理,n^3=nm+2n
两式相加得,m^3+n^3=2mn+2(m+n);于是2(m+n)=m^3-2mn-n^3,既所求
而m^2-n^2=n-m得,(m+n)(m-n)=n-m
由m不等于n,两边消去m-n,得m+n=0
故所求的值等于2(m+n),等于0
m^2=n+2
n^2=m+2
得:m^2=(根号m+2)+2
移项,平方,整理得:m^4-4m^2-m+2=0
解得:m=-1或m=2
若m=2,则由n^2=m+2得n=2,与n不等于m矛盾
所以m=-1,n=1
所以m^3-2mn+n^3=2
∵m²=n+2,n²=m+2
∴m²-n=2; n²-m=2
∴m³-2mn+n³
=m(m²-n)+n(n²-m)
=2m+2n
=2(m+n)
∵m²-n²=n+2-m-2=n-m
(m+n)(m-n)-(n-m)=0
(m-n)(m+n+1)=0
∴m+n=-1
∴原式=-2
m2=n+2n2=m+2相减m2-n2=n+2-m-2(m+n)(m-n)=-(m-n)m-n≠0两边除以m-nm+n=1不好意思写错了(m+n)(m-n)=-(m-n)两边除以m-nm+n=-1
n=2 m=2 值为2