在数论方面,最为世人熟识的当然是费马最后定理(Fermat's Last Theorem),但其实还有很重要的费马小定理(Fermat's Little Theorem,加上“小”是用来分别费马大定理的),以及费马二平方数定理(Fermat's Two Squares Theorem),无限下降法和费马数等等,实在是多不胜数。
费马大定理 ,即:不可能有满足 xn+yn=zn ,n >2的正整数x、y、z、n存在。这命题他写在丢番图《算术》( 拉丁文译本,1621)第 2卷的空白处:“……将一个高于二次的幂分成两个同次幂之和,这是不可能的。
费马小定理是数论中的一个定理。定理:(费马小定理) 当p是素数时,对於任意一个整数a不是p的倍数时,有以下的等式 ap-1≡1 (mod p)。
费马最后定理
当整数 n > 2 时,
方程 x n + y n = z n 无正整数解.
勾股定理及勾股数组
勾股定理 在 ABC 中,若 C 为直角,则 a2 + b2 = c2.
留意:32 + 42 = 52; 52 + 122 = 132;
82 + 152 = 172; 72 + 242 = 252; ……等等
即 (3 , 4 , 5),(5 , 12 , 13) … 等等为方程
x 2 + y 2 = z 2 的正整数解.
我们称以上的整数解为「勾股数组」.
关于方程式 xn + yn = zn 的正整数解,
费马声称当n>2时,就找不到满足 xn +yn = zn 的整数解,例如:方程式
x3 + y3 = z3 就无法找到整数解。
要证明费马最后定理是正确的
(即 xn + yn = zn 对n>2均无正整数解)
只需证 x4+ y4 = z4 和 xp+ yp = zp (P为奇质数),都没有整数解
费马大定理:
当整数n > 2时,关于x, y, z的不定方程
x^n + y^n = z^n.
( (x , y) = (x , z) = (y , z) = 1〔n是一个奇素数〕x>0,y>0,z>0,且xyz≠0)无整数解。