数学分析与微积分的区别?自学先学哪个?

2024-12-21 15:46:48
推荐回答(5个)
回答1:

一、侧重点不同

1、数学分析课程更注重体系的完整性,可以学习那些被广泛应用的微积分定理和结论前人是怎么思考推理得到的,是怎么来的,教的是怎么思考,怎么去发现规律和阐释规律;。

2、而微积分课程把那些已经成熟的定理和结论形式化的教给学生,更多的是教怎么用,教的是怎使用现成的工具解决面对的问题。

二、课程不同

1、数学分析

又称高级微积分,分析学中最古老、最基本的分支。一般指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。

2、微积分

微积分(Calculus),数学概念,是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科,内容主要包括极限、微分学、积分学及其应用。

三、学科发展不同

1、数学分析

在古希腊数学的早期,数学分析的结果是隐含给出的。比如,芝诺的两分法悖论就隐含了几何级数的和。再后来,古希腊数学家如欧多克索斯和阿基米德使数学分析变得更加明确,但还不是很正式。

他们在使用穷竭法去计算区域和固体的面积和体积时,使用了极限和收敛的概念。在古印度数学的早期,12世纪的数学家婆什迦罗第二给出了导数的例子。

2、微积分

公元前7世纪,古希腊科学家、哲学家泰勒斯就对球的面积、体积、与长度等问题的研究就含有微积分思想。

公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287~前212)的著作《圆的测量》和《论球与圆柱》中就已含有积分学的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线所得的体积的问题中就隐含着近代积分的思想。

参考资料来源:百度百科-数学分析

参考资料来源:百度百科-微积分

回答2:

如果自学数学分析与微积分,应先学微积分。

学分析与微积分的区别:
数学分析课程更注重体系的完整性,可以学习那些被广泛应用的微积分定理和结论前人是怎么思考推理得到的,是怎么来的,教的是怎么思考,怎么去发现规律和阐释规律;
而微积分课程把那些已经成熟的定理和结论形式化的教给学生,更多的是教怎么用,教的是怎使用现成的工具解决面对的问题。

又称高级微积分,分析学中最古老、最基本的分支。一般指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。数学中的分析分支是专门研究实数与复数及其函数的数学分支。它的发展由微积分开始,并扩展到函数的连续性、可微分及可积分等各种特性。这些特性,有助我们应用在对物理世界的研究,研究及发现自然界的规律。

微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。

回答3:

数学分析是对数学定理的介绍与讲解,微积分属于数学分析里的内容(大学数学-数学分析-交大数学系编),自学先后对于已有高中基础的人并无差别,数分里各章的内容比较独立,但相互联系,想马上学微积分来实用可先学微积分,想构建数学框架可先学数学分析。

回答4:

数学分析学得要深,一般是数学系 经济系的学 强调数学逻辑 数学证明
而微积分一般面向工科学生 偏向应用 不求对证明的深入研究
当然罗 可以把微积分当数学分析学 但是反过来就不行罗

先学微积分吧!

回答5:

我感觉差不多,先学微积分,做吉米多维奇习题