f(x)=2(1-cos2x)/2+√3(sin2x)+1=√3sin2x-cos2x+2=2sin2xcosπ/6-2cos2xsinπ/6+2=2(sin2xcosπ/6-cos2xsinπ/6)+2=2sin(2x-π/6)+2所以T=2π/2=π增函数时2kπ-π/2<2x-π/6<2kπ+π/2所以增区间(kπ-π/6,kπ+π/3)同理,减区间(kπ+π/3,kπ+5π/6)sin(2x-π/6)最值是±1所以最大=4,最小=0