1⼀(1*2)+1⼀(2*3)+1⼀(3*4)........1⼀(49*50)

2024-12-19 03:14:05
推荐回答(5个)
回答1:

1/(1*2)+1/(2*3)+1/(3*4)........1/(49*50)

=(1-1/2)+(1/2-1/3)+(1/3-1/4)+......+(1/49-1/50)

=1-1/50

=49/50

回答2:

原式=(1-1/2)+(1/2-1/3)+(1/3-1/4)+.......+(1/49-1/50)
=1-1/50=49/50

回答3:

1/1*2+1/2*3+1/3*4+…+1/49*50
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+......+(1/49-1/50)
=1-1/2+1/2-1/3+1/3-......+1/49-1/50
=1-1/50
=49/50

回答4:

可以采用裂项法
原式=1-1/2+1/2-1/3+1/3-1/4+......+1/49-1/50=1-1/50=49/50

对于1/(n*(n+a))有:1/(n*(n+a))=(1/a)*(1/n-1/(n+a))

回答5:

1/(a)(a+1)=1/a-1/(a+1)所以原式等49/50