互为相反数则相加为0
|ab-2|=|b-1|=0
绝对值大于等于0
相加等于0,若有一个大于0,则另一个小于0,不成立。
所以两个都等于0
所以ab=2,b=1
所以a=2/b=2
所以
1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+……+1/(a+2008)(b+2008
=1/1*2+1/2*3+1/3*4+……+1/2009*2010
=1-1/2+1/2-1/3+1/3-1/4+……+1/2009-1/2010
中间正负抵消
=1-1/2010
=2009/2010
ab-2的绝对值与b-1的绝对值互为相反数,可得a=2,b=1
通项公式为1/(1+n)(2+n)
=1/(n+1)-1/(n+2)
迭代
得1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+……+1/(a+2008)(b+2008)
=1-1/2010
=2009/2010
ab-2的绝对值与b-1的绝对值互为相反数,
则ab-2的绝对值与b-1的绝对值都为0,
ab-2=0,b-1=0
所以,b=1,a=2
1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+……+1/(a+2008)(b+2008)变为1/2+1/(2*3)+1/(3*4)……1/(2009*2010)
1/2=1-1/2
1/(2*3)=1/2-1/3
1/(3*4)=1/3-1/4
所以,原式=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5……-1/2010=1-1/2010=2009/2010