1/(1×2)=1/2=1-1/2
1/(2×3)=1/6=(3-2)/6=3/6-2/6=1/2-1/3
1/(3×4)=1/12=(4-3)/12=4/12-3/12=1/3-1/4
.....
1/(1999×2000)=(2000-1999)/(1999×2000)=1/1999-1/2000
1/(1×2)+1/(2×3)+1/(3×4)+…+1/(1999×2000)
=1-1/2+1/2-1/3+1/3-1/4+…1/1999-1/2000
=1-1/2000=1999/2000
根据1/(n(n+1))=1/n-1/n+1展开各项
1-1/2=1/(1*2)
1/2-1/3=1/(2*3)
......
[a(a+1)]^(-1)=a^(-1)-(a+1)^(-1)