1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6
证:(利用恒等式(n+1)^3=n^3+3n^2+3n+1):
(n+1)^3-n^3=3n^2+3n+1,
n^3-(n-1)^3=3(n-1)^2+3(n-1)+1
..............................
3^3-2^3=3*(2^2)+3*2+1
2^3-1^3=3*(1^2)+3*1+1.
把这n个等式两端分别相加,得:
(n+1)^3-1=3(1^2+2^2+3^2+....+n^2)+3(1+2+3+...+n)+n,
由于1+2+3+...+n=(n+1)n/2,
代人上式得:
n^3+3n^2+3n=3(1^2+2^2+3^2+....+n^2)+3(n+1)n/2+n
整理后得:
1^2+2^2+3^2+....+n^2=n(n+1)(2n+1)/6
a^2+b^2=a(a+b)-b(a-b)
...展开1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6
证:(利用恒等式(n+1)^3=n^3+3n^2+3n+1):
(n+1)^3-n^3=3n^2+3n+1,
n^3-(n-1)^3=3(n-1)^2+3(n-1)+1
..............................
3^3-2^3=3*(2^2)+3*2+1
2^3-1^3=3*(1^2)+3*1+1.
把这n个等式两端分别相加,得:
(n+1)^3-1=3(1^2+2^2+3^2+....+n^2)+3(1+2+3+...+n)+n,
由于1+2+3+...+n=(n+1)n/2,
代人上式得:
n^3+3n^2+3n=3(1^2+2^2+3^2+....+n^2)+3(n+1)n/2+n
整理后得:
1^2+2^2+3^2+....+n^2=n(n+1)(2n+1)/6
a^2+b^2=a(a+b)-b(a-b)
希望对你有所帮助,望采纳收起
果子朵数列!
就像你码放果子(球状物)时,最下面码的最多n方。倒数第三层码9个,倒数第二层码4个,最后一层码一个。
n (1 + n) (1 + 2 n)/6
楼上的都对,但写的不好。
1/6 n (1 + n) (1 + 2 n)
用待定系数法可以求
1^2+2^2+3^2+4^2+…+N^2=1/6N*(N+1)*(2N+1)